Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a;b;c là các số nguyên tố . Tìm a;b;c , biết :
a2 + b2 + c2 = 5070
a2+b2+c2=1398
tìm số nguyên tố a b c
Cho 4 số tự nhiên khác 0 thỏa mãn: a2 + b2 = c2 + d2. Chứng minh rằng a + b + c + d là hợp số
a2+b2+c2=5070
Cho 2015 số nguyên a1, a2,..., a2015. b1,b2,...,b2015 là cách sắp xếp theo thứ tự khác của các số a1, a2,..., a2015.
CMR: P = (a1-b1).(a2-b2)...(a2015-b2015) là 1 số nguyên chẵn
a) cho ba số nguyên a,b,c thỏa mãn :a+b=c+d và ab +1=cd . Chứng tỏ c=d
b)cho dãy số nguyên dương : a1,a2,a3,...a7.Gọi b1,b2,...b7 là cách sắp xếp theo thứ tự khác của các số trên . Tính tổng
c)(a1+b1),(a2+b2),....(a7+b7) và cho biết tích P=(a1+b1).(a2+b2).....(a7+b7) là chẵn hay lẻ?
CÁC BẠN GIẢI NHANH GIÙM MÌNH NHA!
cho a1, a2, a3 ,...,a2003 là các số nguyên : b1, b2 , ...,b 2003 là cách sắp xếp theo thứ tự khác của a1,,a2,..,a2003
CMR: P=(a1-b1)(a2-b2) ........(a2003-b2003) là một số chẵn
Biến đổi vế trái thành vế phải:
a) a + b 2 = a 2 + 2 a b + b 2
b) ( a − b ) ( a + b ) = a 2 − b 2
c) a ( b + c ) − b ( a − c ) = ( a + b ) c
Cho a1, a2,..., a2003 là các số nguyên b1, b2,..., b2003 là các cách sắp xếp theo thứ tự khác của a1, a2,..., a2003.
Chứng minh rằng: P = (a1 - b1)(a2 - b2)...(a2003 - b2003) là một số chẵn.
C/m rằng với mọi a,b,c luôn có: ( a+b+c)(a2+b2+c2-ab-bc-ca)=a3+b3+c3-3abc