Bài này nó cứ sao sao ấy, về cơ bản là ko thể giải được nếu ko có máy tính cầm tay để test (có rất nhiều nghiệm).
Nếu b, c cùng lẻ hoặc cùng chẵn \(\Rightarrow b^4+c^2\) là số chẵn lớn hơn 2 \(\Rightarrow a\) ko phải SNT (ktm)
\(\Rightarrow\) b hoặc c phải có 1 số chẵn, 1 số lẻ
TH1: b chẵn \(\Rightarrow b=2\Rightarrow a=16+c^2\)
Do \(a\le2019\Rightarrow c< 44\)
Ta cũng có thể loại trừ các số nguyên tố có tận cùng bằng 7 hoặc 3 (vì khi đó \(c^2+16\) có tận cùng bằng 5 ko phải SNT)
Kiểm tra với các số nguyên tố nhỏ hơn 44 và tận cùng khác 3, 7 được các cặp thỏa mãn là \(\left(c;a\right)=\left(5;41\right);\left(11;137\right);\left(29;857\right);\left(31;977\right);\left(41;1697\right)\)
TH2: c chẵn \(\Rightarrow c=2\Rightarrow a=b^4+4=b^4+4b^2+4-4b^2=\left(b^2+2\right)^2-4b^2\)
\(\Rightarrow a=\left(b^2-2b+2\right)\left(b^2+2b+2\right)\)
\(\Rightarrow b^2-2b+2=1\) \(\Rightarrow b=1\) (ktm)