1/ Cho số nguyên dương n thỏa n và 10 là 2 số nguyên tố cùng nhau . CMR (n^4 - 1) chia hết cho 40
2/ Tìm tất cả các số nguyên tố p và các số nguyên dương x, y thỏa {p-1=2x(x+2) {p^2 -1= 2y(y+2)
3/ Tìm tất cả các số nguyên dương n sao cho tồn tại các sô nguyên dương ,y,z thỏa mãn x^3+y^3+z^3=nx^2 y^2 z^2
Ta gọi số n là số hoàn hảo nếu tổng các ước dương của nó bằng 2n, ví dụ: 6 là số hoàn hảo. Hãy tìm tất cả các số hoàn hảo n sao cho n – 1 và n + 1 là các số nguyên tố.
a) Tìm tất cả các số nguyên tố p và các số nguyên dương x,y biết : p -1=2x(x+2) và p2-1 =2y(y+2)
b) Tìm tất cả các số nguyên dương n sao cho tồn tại x,y,z là các số nguyên dương thỏa mãn x3+y3 +z3 =n.x2y2z2
Với mỗi số nguyên dương n, ta kí hiệu d(n) là số các ước nguyên dương của n và s(n) là tổng tất cả các ước nguyên dương đó. Ví dụ, d(2018) = 4 vì 2018 có (và chỉ có) 4 ước nguyên dương là 1; 2; 1009; 2018 và s(2018) = 1 + 2 + 1009 + 2018 = 3030. Tìm tất cả các số nguyên dương x sao cho s(x) . d(x) = 96
Tìm tất cả các số nguyên dương a sao cho tồn tại số nguyên dương n thỏa mãn a chia hết cho cả hai số n2 + 1 và ( n + 1 )2 + 1
Tìm các số nguyên dương n lẻ sao cho n-1 là số nguyên dương nhỏ nhất trong các số nguyên dương k thỏa mãn \(\frac{k\left(k+1\right)}{2}\)chia hết cho n
với mỗi số nguyên dương n, ta kí hiệu d(n) là số các ước nguyên dương của n và s(n) là tổng tất cả các ước nguyên dương đó .Chẳng hạn d(2018) = 4 vì 2018 có và chỉ có 4 ước Nguyên Dương là 1;2;1009; 2018 và s (2018) = 1 + 2 + 1009 + 2018 = 3030 Tìm tất cả các số nguyên dương x sao cho s(x).d(x)= 96
tìm các số nguyên n,k lớn hơn 2 và số nguyên tố p sao cho n^5+n^4-2n^3-2n^2+1=p^k. giúp mk vs ạ
a, CMR nếu n là số nguyên dương thì \(2\left(1^{2013}+2^{2013}+...+n^{2013}\right)\) chia hết cho \(n\left(n+1\right)\)
b, Tìm tất cả các số nguyên tố p,q tm đk \(p^2-2q^2=1\)