Bạn tham khảo nhé!!!!
a3+b3=3ab−1
⇔a3+b3−3ab+1=0⇔a3+b3−3ab+1=0
⇔(a+b)3−3ab(a+b)−3ab+1=0
⇔(a+b)3+1−3ab(a+b+1)=0
⇔(a+b+1)[(a+b)2−(a+b)+1]−3ab(a+b+1)=0
⇔(a+b+1)(a2+b2+1−ab−a−b)=0
Vì a,b>0a,b>0 nên a+b+1≠0
Do đó:
a2+b2+1−a−b−ab=0
⇔\(\frac{\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2}{2}\)=0
⇔a=b=1
Do đó: a2018+b2019=1+1=2
Ta có đpcm.
đề lm j cho a3+b3=3ab-1 đâu bạn