\(x^2-2\left(m+1\right)x+4m-3=0\)
Theo Vi - ét, ta có :
\(\left\{{}\begin{matrix}x_`+x_2=-\dfrac{b}{a}=2\left(m+1\right)=2m+2\\x_1x_2=\dfrac{c}{a}=4m-3\end{matrix}\right.\)
Ta có :
\(x_1^2x_2+x_1x_2^2=4\)
\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)-4=0\)
\(\Leftrightarrow\left(4m-3\right)\left(2m+2\right)-4=0\)
\(\Leftrightarrow8m^2+8m-6m-6-4=0\)
\(\Leftrightarrow8m^2+2m-10=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-\dfrac{5}{4}\end{matrix}\right.\)