Ta có :
lim x → 1 − f x = lim x → 1 − m − 3 = m − 3 lim x → 1 + f x = lim x → 1 + 1 − 7 x 2 + 2 = − 2
Để tồn tại lim x → 1 f ( x ) khi và chỉ khi:
lim x → 1 − f x = lim x → 1 + f x ⇔ m − 3 = − 2 ⇔ m = 1
Chọn đáp án B
Ta có :
lim x → 1 − f x = lim x → 1 − m − 3 = m − 3 lim x → 1 + f x = lim x → 1 + 1 − 7 x 2 + 2 = − 2
Để tồn tại lim x → 1 f ( x ) khi và chỉ khi:
lim x → 1 − f x = lim x → 1 + f x ⇔ m − 3 = − 2 ⇔ m = 1
Chọn đáp án B
Cho hàm số y = x3 + 3mx2 + (m + 1)x + 1 (1), m là tham số thực. Tìm các giá trị của m để tiếp tuyến của đồ thị của hàm số (1) tại điểm có hoành độ x = -1 đi qua điểm A(1; 2).
A: 1
B: -1
C: 3/4
D: 5/8
Tìm các giá trị thực của tham số m để hàm số f x = x + m k h i x < 0 x 2 + 1 k h i x ≥ 0 có giới hạn tại x= 0.
A. m= -1
B. m= 2
C. m= -2
D. m =1
Cho biểu thức $f\left( x \right)=\dfrac{1}{3}{{x}^{3}}+\left( m-1 \right){{x}^{2}}-\left( 2m-10 \right)x-1$ với $m$ là tham số thực. Tìm tất cả các giá trị của $m$ để ${f}'\left( x \right)>0$ $\forall x\in \mathbb{R}$.
Tìm các giá trị thực của tham số m để hàm số h x = x 3 + 1 x + 1 k h i x < - 1 m x 2 - x + m 2 k h i x ≥ - 1 để hàm số có giới hạn tại x= -1.
A. m = -1; m = 2.
B.m = -1; m = -2.
C. m=1; m = -2.
D. m=1;m= 2
Cho hàm số . Tìm tất cả các giá trị của tham số thực m để hàm số đạt giá trị lớn nhất tại điểm x=1
A. Không có giá trị m
B. m = 1
C. m = 2
D. m = -3
tìm tổng tất cra các giá trị của tham số thực m để hàm số y=|mx-1|-x^2 có giá trị lớn nhất bằng 10/8
cho hàm số y= \(\dfrac{1}{3}x^2\)-\(\dfrac{m}{2}+mx+5\)
tìm tất cả các giá trị của tham số m để y'≥0 ∀x∈R
Có bao nhiêu giá trị thực của tham số m để hàm số y = cos x + m . sin x + 1 cos x + 2 có giá trị lớn nhất bằng 1
A. 0
B. 1
C. 2
D. 3
Tìm giá trị của tham số m để hàm số f ( x ) = x - 1 x 2 - 1 n ế u x ≠ 1 m 2 n ế u x = 1 liên tục tại x = 1