Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Khiêm Nguyễn Gia

Tìm các cặp số nguyên \(\left(x;y\right)\) thỏa mãn \(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\) sao cho tích \(xy\) đạt giá trị lớn nhất.

Nguyễn Đức Trí
18 tháng 8 2023 lúc 15:14

\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)

\(\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}=4\left(1\right)\)

Theo Bất đẳng thức Cauchy cho các cặp số \(\left(x^2;\dfrac{1}{x^2}\right);\left(x^2;\dfrac{y^2}{4}\right)\)

\(\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge2.\dfrac{1}{2}xy\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge xy\end{matrix}\right.\)

Từ \(\left(1\right)\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}\ge2+xy\)

\(\Leftrightarrow4\ge2+xy\)

\(\Leftrightarrow xy\le2\left(x;y\inℤ\right)\)

\(\Leftrightarrow Max\left(xy\right)=2\)

Dấu "=" xảy ra khi

\(xy\in\left\{-1;1;-2;2\right\}\)

\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-2\right);\left(1;2\right);\left(-2;-1\right);\left(2;1\right)\right\}\) thỏa mãn đề bài


Các câu hỏi tương tự
Khiêm Nguyễn Gia
Xem chi tiết
nguyen vu tan
Xem chi tiết
Họ Và Tên
Xem chi tiết
Họ Và Tên
Xem chi tiết
Họ Và Tên
Xem chi tiết
Họ Và Tên
Xem chi tiết
Họ Và Tên
Xem chi tiết
Hoàng Anh Thắng
Xem chi tiết
Minh Hiếu
Xem chi tiết