Ta có:
`(a+3b-2)^2=a^2+9b^2+4`
`a^2+(3b)^2+(-2)^2+2*a*3b+2*a*(-2)+2*(3b)*(-2)=a^2+9b^2+4`
`a^2+9b^2+4+6ab-4a-12b=a^2+9b^2+4`
`6ab-4a-12b=0`
`(6ab-12b)-4a=0`
`6b(a-2)-4a+8=8`
`6b(a-2)-4(a-2)=8`
`3b(a-2)-2(a-2)=4`
`(3b-2)(a-2)=4`
Vì: `a,b\inZ^+` do đó: `3b-2,a-2\in Ư(4)={1;-1;2;-2;4;-4}`
Mà: `3b-2>=-2` do đó:
`TH1:3b-2=1`
`3b=1+2=3`
`b=3/3=1`
Suy ra: `a-2=4`
`->a=4+2=6`
`TH2:3b-2=-1`
`3b=-1+2=1`
`b=1/3(L)`
`TH3:3b-2=-2`
`3b=-2+2=0`
`b=0/3=0`
Suy ra: `a-2=-2`
`a=-2+2=0`
`TH4:3b-2=2`
`3b=2+2=4`
`b=4/3(L)`
`TH5:3b-2=4`
`3b=4+2=6`
`b=6/3=2`
Suy ra: `a-2=1`
`a=1+2=3`
Vậy: `...`