Minh Hiếu

Tìm a,b,c ∈ Z+ sao cho:

\(\left\{{}\begin{matrix}a^2+1\\b^2+1\end{matrix}\right.\) đều là số nguyên tố và đồng thời \(\left(a^2+1\right)\left(b^2+1\right)=c^2+1\)

Nguyễn Việt Lâm
9 tháng 1 2023 lúc 20:33

Với \(a=b\) thì \(\left(a^2+1\right)^2\) và \(c^2\) là 2 số tự nhiên liên tiếp đều chính phương nên \(c=0;a^2+1=1\) (ktm)

Với \(a\ne b\), ko mất tính tổng quát giả sử \(a< b\)

\(\left(a^2+1\right)\left(b^2+1\right)=c^2+1\Leftrightarrow a^2\left(b^2+1\right)=\left(c-b\right)\left(c+b\right)\) (1)

Mà \(b^2+1\) là SNT \(\Rightarrow c-b\) hoặc \(c+b\) chia hết \(b^2+1\)

Do \(a< b\Rightarrow\left(b^2+1\right)^2>c^2+1\Rightarrow b^2>c\) (2)

Nếu \(c-b\) chia hết \(b^2+1\Rightarrow c-b\ge b^2+1\Rightarrow c\ge b^2+b+1>b^2\) mâu thuẫn (2)

\(\Rightarrow c+b\) chia hết \(b^2+1\) \(\Rightarrow c+b=k\left(b^2+1\right)\Rightarrow k\left(b^2+1\right)< b^2+b\)

\(\Rightarrow k< \dfrac{b^2+b}{b^2+1}< 2\Rightarrow k=1\)

\(\Rightarrow c=b^2-b+1\)

Thế vào (1) \(\Rightarrow a^2\left(b^2+1\right)=\left(b-1\right)^2\left(b^2+1\right)\Rightarrow a^2=\left(b-1\right)^2\)

\(\Rightarrow a=b-1\)

\(\Rightarrow\left(b-1\right)^2+1\) và \(b^2+1\) cùng là số nguyên tố

- Với \(b=1\) không thỏa

- Với \(b=2\) thỏa

- Với \(b>2\) do \(b^2+1\) nguyên tố \(\Rightarrow b^2+1\) lẻ \(\Rightarrow b\) chẵn

\(\Rightarrow\left(b-1\right)^2+1\) chẵn \(\Rightarrow\) ko là SNT \(\Rightarrow\) không thỏa

Vậy \(b=2;a=1;c=3\)

Bình luận (0)

Các câu hỏi tương tự
Minh Hiếu
Xem chi tiết
Trương Tấn Sang
Xem chi tiết
Long Hoàng
Xem chi tiết
Minh Hiếu
Xem chi tiết
Trần Quốc Khanh
Xem chi tiết
Tô Mì
Xem chi tiết
Linh Nguyen
Xem chi tiết
đấng ys
Xem chi tiết
Minh Hiếu
Xem chi tiết