1:
Ta có;ΔCAB vuông tại C
=>ΔCAB nội tiếp đường tròn đường kính AB
mà ΔCAB nội tiếp (O)
nên O là trung điểm của AB
Xét tứ giác OBDC có
\(\widehat{OBD}+\widehat{OCD}=90^0+90^0=180^0\)
=>OBDC là tứ giác nội tiếp
=>O,B,D,C cùng thuộc một đường tròn
Xét (O) có
DB,DC là các tiếp tuyến
Do đó: DB=DC
=>D nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OD là đường trung trực của BC
=>OD\(\perp\)BC tại H và H là trung điểm của BC
Ta có: OD\(\perp\)BC
AC\(\perp\)BC
Do đó: OD//AC
2: Xét (O) có
ΔBEA nội tiếp
BA là đường kính
Do đó: ΔBEA vuông tại E
=>BE\(\perp\)EA tại E
=>BE\(\perp\)AD tại E
Xét ΔBAD vuông tại B có BE là đường cao
nên \(DE\cdot DA=DB^2\left(3\right)\)
Xét ΔDBO vuông tại B có BH là đường cao
nên \(DH\cdot DO=DB^2\left(4\right)\)
Từ (3) và (4) suy ra \(DE\cdot DA=DH\cdot DO\)