Cho hai số thực không âm x,y ≤ 1. Biết P = l n ( 1 + x 2 ) ( 1 + y 2 ) + 8 17 ( x + y ) 2 có giá trị nhỏ nhất là - a b + 2 ln c d trong đó a, b, c, d là số tự nhiên thỏa mãn ước chung của (a,b) = (c,d) = 1. Giá trị của a+b+c+d là
A. 406
B. 56
C. 39
D. 405
Cho phương trình 2 log 4 2 x 2 - x + 2 m - 4 m 2 + log 1 2 x 2 + m x - 2 m 2 = 0 . Biết rằng S = a ; b ∪ c ; d , a < b < c < d là tập hợp các giá trị của tham số m để phương trình đã cho có hai nghiệm phân biệt x 1 , x 2 thỏa x 1 2 + x 2 2 > 1 . Tính giá trị biểu thức A = a + b + 5c + 2d
A. A = 1
B. A = 2
C. A = 0
D. A = 3
Cho phương trình
2
log
4
2
x
2
−
x
+
2
m
−
4
m
2
+
log
1
2
x
2
+
m
x
−
2
m
2
=
0
Biết
S
=
a
;
b
∪
c
;
d
,
a
<
b
<
c
<
d
là tập hợp các giá trị của tham số m để phương trình đã cho có hai nghiệm phân biệt
x
1
,
x
2
thỏa mãn
x
1
2
+
x
2
2
>
1
. Tính giá trị biểu thức
A. A = 1
B. A = 2
C. A = 0
D. A = 3
Biết rằng 1 1 . 2 . 3 + 1 2 . 3 . 4 + . . . + 1 n ( n + 1 ) ( n + 2 ) = a n 2 + b n c n 2 + d n + 16 trong đó a,b,c,d và n là các số nguyên dương.Tính giá trị của biểu thức T=a+b+c+d
A. 45
B.40
C. 38
D. 24
F x là một nguyên hàm của hàm số f x = 3 x 2 + 1 2 x + 1 . Biết F 0 = 0 , F 1 = a + b c ln 3 , trong đó a, b, c là các số nguyên dương và b c là phân số tối giản. Khi đó giá trị biểu thức a + b + c bằng
A. 4
B. 3
C. 12
D. 9
Cho các mệnh đề sau:
(I). Nếu a = b c t h ì 2 ln a = ln b + ln c
(II). Cho số thực 0 < a ≠ 1. Khi đó a - 1 log a x ≥ 0 ⇔ x ≥ 1
(III). Cho các số thực 0 < a ≠ 1 , b > 0 , c > 0 . Khi đó b log a c ≥ 0 ⇔ x ≥ 1
(IV). l i m x → + ∞ 1 2 x = - ∞ .
Số mệnh đề đúng trong các mệnh đề trên là
A. 3
B. 4
C. 2
D. 1
Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P):x+3y-2z+2=0 và đường thẳng d: x - 1 2 = y + 1 - 1 = z - 4 1 . Đường thẳng qua A(1;2;-1) và cắt (P), d lần lượt tại B và C(a;b;c) sao cho C là trung điểm của AB. Giá trị của biểu thức a+b+c bằng
A. -5
B. -12
C. -15
D. 11
Bài 1: Cho B = \(x^{2013}-2014x^{2012}+2014x^{2011}-2014x^{2010}+...-2014x^2+2014x-1\)
Tính giá trị của biểu thức B với x=2013.
Bài 2: Cho các số a,b,c khác 0 thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá trị của biểu thức : M=\(\frac{ab+bc+ca}{a^2+b^2+c^2}\)
Cho a , b là các số thực và f x = a ln 2017 x 2 + 1 + x + b x sin 2018 x + 2. Biết f 5 log c 6 = 6 , tính giá trị của biểu thức P = f − 6 log c 5 với 0 < c ≠ 1
A. P = − 2
B. P = 6
C. P = 4
D. P = 2