a: \(=x-\dfrac{3}{2}+2y\)
b: \(=\dfrac{1}{x\left(y-x\right)}-\dfrac{1}{y\left(y-x\right)}=\dfrac{y-x}{xy\left(y-x\right)}=\dfrac{1}{xy}\)
a: \(=x-\dfrac{3}{2}+2y\)
b: \(=\dfrac{1}{x\left(y-x\right)}-\dfrac{1}{y\left(y-x\right)}=\dfrac{y-x}{xy\left(y-x\right)}=\dfrac{1}{xy}\)
thực hiện phép tính:
a/-2x^3y(2x^2-3y+5yx)
b/(x-2y)(x^2y^2-xy+2y)
c/2/5xy(x^2y-5x+10y)
d/2/3x^2y(3xy-x^2+y)
e/(x-y)(x^2+xy+y^2)
f/(1/2xy-1)(x^3-2x-6)
8,Thực hiện phép tính
a,\(\frac{5x^2-y^2}{xy}-\frac{3x-2y}{y}\)
b,\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
c,\(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}\)
d,\(\frac{1}{x-y}+\frac{3xy}{y^3-x^3}+\frac{x-y}{x^2+xy+y^2}\)
e,\(\frac{2x+y}{2x^2-xy}+\frac{16x}{y^2-4x^2}+\frac{2x-y}{2x^2+xy}\)
f,\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
Thực hiện phép tính rồi tính giá trị của biểu thức:
(x2-2xy+2y2).(x2+y2)+ xy.(2x2-3xy+2y2) với x=y=-1/2
Thực hiện phép nhân sau
1)-xy(x^2 + xy - y^2)
2) -5x^2y(2y^2-xy)
3)(-2x^3 - 1/4y - 4y^2)8xy^2
4)(2x^3-3xy +12x).(-1/6xy)
Thực hiện phép tính:
a) \(\dfrac{x+2y}{xy}\div\dfrac{x^2+4xy+4y^2}{2x^2}\)
b) \(\dfrac{4x^3-xy^2}{x^2+xy+y^2}\div\dfrac{\left(2x-y\right)^3}{x^3-y^3}\)
c) \(\dfrac{x+3}{x+2}\div\dfrac{3x+9}{2x-1}\div\dfrac{4x-2}{2x+4}\)
d) \(\dfrac{x+1}{x+2}\div\left(\dfrac{2x^2}{2x-3}\times\dfrac{3x+3}{4x^3}\right)\)
Thực hiện phép tính a, ½x²y . (2x³-x²+4x-1) b,(-2x²y+½xy²-3) . (-2x²y) c,(x+2). (3x²-4x) d, (5x-2y) . (x²-xy+1)
A.Giải phương trình nghiệm nguyên: x2+xy-2x+1=x+y
B. Co x,y là các số thực khác 0 tỏa mãn: x2-2xy+2y2-2x-2y+5=0. Tính giá trị của biểu thức P=\(\frac{xy+x+y+13}{4xy}=0\)
bài 5: thực hiện phép tính
a) ( x + 3y ) ( x - 2y )
b) ( 2x - y ) ( y - 5x )
c) ( 2x - 5y ) ( y^2 - 2xy )
d) ( x - y ) ( x^2 - xy - y^2 )