\(D=1-4+4^2-4^3+4^4-...+4^{2016}-4^{2017}\) (sửa \(2^{2017}\) thành \(4^{2017}\))
\(\Rightarrow D=\left(1-4\right)+4^2\left(1-4\right)+4^4\left(1-4\right)-...+4^{2016}\left(1-4\right)\)
\(\Rightarrow D=\left(-3\right)+4^2.\left(-3\right)+4^4.\left(-3\right)-...+4^{2016}.\left(-3\right)\)
\(\Rightarrow D=\left(-3\right)\left(1+4^2+4^4+...+4^{2016}\right)\)
\(\Rightarrow4D=\left(-3\right)\left(4+4^3+4^5+...+4^{2017}\right)\)
\(\Rightarrow4D+D=\left(-3\right)\left(1+4+4^2+4^3+4^4+...+4^{2016}+4^{2017}\right)\)
\(\Rightarrow5D=\left(-3\right)\dfrac{4^{2017+1}-1}{4-1}\)
\(\Rightarrow D=\left(-3\right)\dfrac{4^{2018}-1}{3.5}\)
\(\Rightarrow D=\left(-1\right)\dfrac{4^{2018}-1}{5}=\dfrac{1-4^{2018}}{5}\)