c) \(\dfrac{x-4\sqrt{x}+4}{x-2\sqrt{x}}\left(đk:x>0\right)=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
d) \(\dfrac{x-9}{x+6\sqrt{x}+9}\left(đk:x\ge0\right)=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)^2}=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
e) \(\dfrac{x-10\sqrt{x}+25}{25-x}\left(đk:x\ge0,x\ne25\right)=\dfrac{\left(\sqrt{x}-5\right)^2}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
c: \(\dfrac{x-4\sqrt{x}+4}{x-2\sqrt{x}}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
d: \(\dfrac{x-9}{x+6\sqrt{x}+9}=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
e: \(\dfrac{x-10\sqrt{x}+25}{25-x}=\dfrac{5-\sqrt{x}}{\sqrt{x}+5}\)