Áp dụng hệ thức đường cao và hình chiếu ta có:
\(AH^2=BH\cdot HC\)
\(\Rightarrow AH^2=BH\cdot\left(BC-BH\right)\)
\(\Rightarrow12^2=BH\cdot\left(25-BH\right)\)
\(\Rightarrow144=25\cdot BH-BH^2\)
\(\Rightarrow BH^2-25\cdot BH+144=0\)
\(\Rightarrow\left(BH-9\right)\left(BH-16\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}BH=9\left(cm\right)\\BH=16\left(cm\right)\end{matrix}\right.\)
(1) Với: BH=9(cm)
\(\Rightarrow HC=BC-HB=25-9=16\left(cm\right)\)
Áp dụng hệ thức cạnh góc vuông và hình chiếu ta có:
\(AB^2=BH\cdot BC\Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{9\cdot25}=15\left(cm\right)\)
\(AC^2=HC\cdot BC\Rightarrow AC=\sqrt{HC\cdot BC}=\sqrt{16\cdot25}=20\left(cm\right)\)
(2) Với BC=16(cm)
\(\Rightarrow HC=BC-BH=25-16=9\left(cm\right)\)
Áp dụng hệ thức cạnh góc vuông và hình chiếu ta có:
\(AB^2=BH\cdot BC\Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{16\cdot25}=20\left(cm\right)\)
\(AC^2=HC\cdot BC\Rightarrow AB=\sqrt{HC\cdot BC}=\sqrt{9\cdot25}=15\left(cm\right)\)