Cho ∆ABC nhọn cân tại A, có L là trung điểm BC. Điểm D thay đổi, không cùng phía với A đối với BC thoả ∠BDC = ∠BAC. Đường tròn (I) là đường tròn nội tiếp ∆BDC, tiếp xúc DB, DC tại E, F. Lấy M, N thuộc EF mà LN ⊥ IC, LM ⊥ IB. BN, BM cắt AC, AB tại P, Q.
a. Chứng minh rằng PQ tiếp xúc một đường tròn cố định.
b. Và tiếp điểm đó là trực tâm của ∆IBC.
Cho hình thang ABCD có AB // CD và AB = 2a, BC = CD = DA = a. Đường thẳng d vuông góc với mặt phẳng (ABCD) tại A. Gọi S là một điểm duy nhất thay đổi trên d. (P) là một mặt phẳng qua A vuông góc với SB tại I và cắt SC, SD lần lượt tại J, K.
a) Chứng minh tứ giác BCJI, AIJK là các tứ giác nội tiếp.
b) Gọi O là trung điểm của AB, O' là tâm đường tròn ngoại tiếp tứ giác BCJI. Chứng minh rằng OO' ⊥ (SBC).
c) Chứng minh rằng khi S thay đổi trên d thì JK luôn luôn đi qua một điểm cố định.
d) Tìm một điểm cách đều các điểm A, B, C, D, I, J, K và tìm khoảng cách đó.
e) Gọi M là giao điểm của JK và (ABCD). Chứng minh rằng AM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC.
f) Khi S thay đổi trên d, các điểm I, J, K lần lượt chạy trên đường nào.
Cho tam giác ABC nhọn không cân nội tiếp đường tròn (O). Đường tròn (J) bàng tiếp góc A tiếp xúc với các đường thẳng BC, CA, AB lần lượt tại D, E, F. Gọi M là trung điểm của BC. Đường tròn đường kính MJ cắt DE tại điểm K khác D. Gọi D là giao điểm thứ hai của đường thẳng AD và (J) .
a) Chứng minh rằng bốn điểm B, D, K, D' cùng nằm trên một đường tròn.
b) Gọi G là giao của BC và EF, đường thẳng GJ cắt AB, AC lần lượt tại L và N. Lấy các điểm P, Q lần lượt trên các đường thẳng JB, JC sao cho \(\widehat{PAB}=\widehat{QAC}=90^o\). Các đường thẳng LP và NQ cắt nhau tại T. Gọi S là điểm chính giữa cung BAC của (O) và T là giao của AT với (O). Chứng minh rằng đường thẳng ST' đi qua tâm đường tròn nội tiếp tam giác ABC.
Cho tam giác ABC cân tại A nội tiếp đường tròn tâm H đường kính AK. I là một điểm nằm trên cung AB không chứa C. Dây cung IK cắt BC tại M. Đường trung trực của IM cắt AB,AC lần lượt tại D và E
CMR : A,H,D,E,I thuộc một đường tròn
Cho tam giác ABC không cân tại A. Đường tròn (O) thay đổi đi qua B và C theo thứ tự cắt AB, AC lần lượt tại M và N. Gọi P là giao điểm của BN và CM. Q là điểm chính giữa cung BC không chứa M,N của (O). K là tâm đường tròn nội tiếp tam giác PBC. CMR: KQ luôn đi qua 1 điểm cố định
cho tam giác ABC nội tiếp đường tròn tâm I, có đỉnh A thuộc đường thẳng d:x+y-2=0, điểm D(-2;1) là chân đường cao của tam giác ABC hạ từ A. Gọi E(3;1) là chân đường vuông góc hạ từ B xuống AI, điểm P(2;1) thuộc cạnh AC. Tìm tọa độ các đỉnh của tam giác ABC
cho tam giác ABC nội tiếp đường tròn tâm I, có đỉnh A thuộc đường thẳng d:x+y-2=0, điểm D(-2;1) là chân đường cao của tam giác ABC hạ từ A. Gọi E(3;1) là chân đường vuông góc hạ từ B xuống AI, điểm P(2;1) thuộc cạnh AC. Tìm tọa độ các đỉnh của tam giác ABC
Cho tam giác ABC vuông tại A, đường tròn nội tiếp (I) tiếp xúc với AB,AC tại E,D. Các đường tròn bàng tiếp góc B,C tiếp xúc với AC,AB tại F,G . DE cắt FG tại P. PL,PM là 2 tiếp tuyến của (I). Cmr AM vuông góc với BC