Cho tam giác nhọn ABC , hai đường cao BD và CE cắt nhau tại H . Trên HB và HC lần lượt lấy M và N sao cho Góc AMC = Góc ANB = 90 độ. C/m : AM = AN
Cho tam giác nhọn ABC , hai đường cao BD và CE cắt nhau tại H . Trên HB và HC lần lượt lấy M và N sao cho Góc AMC = Góc ANB = 90 độ
C/m : AM = AN
Cho tam giác nhọn ABC , hai đường cao BD và CE cắt nhau tại H . Trên HB và HC lần lượt lấy M và N sao cho Góc AMC = Góc ANB = 90 độ
C/m : AM = AN
Cho tam giác nhọn ABC, 2 đường cao BD và CE cắt nhau tại H. Trên HB và HC lần lượt lấy các điểm M và N sao cho \(\widehat{AMC}\) = \(\widehat{ANB}\) = \(90^o\). Chứng minh rằng: AM = AN
Cho tam giác ABC nhọn, 2 đường cao BD,CE giao nhau tại H. a)Cm: AE.AB=AD.AC b)Trên BH,HC lần lượt lấy điểm M và N sao cho góc AMC= góc ANB=90°. Cm: AP vuông góc với MN Mn giúp mình phần B với Cảm ơn nhiều ạ!
1. Cho tam giác ABC vuông tại A. Gọi I là giao điểm các đường phân giác trong của tam giác.
biết IB=\(\sqrt{5}\); IC=\(\sqrt{10}\). Tính BC
2. Cho tam giác ABC nhọn. Hai đường cao BD và CE cắt nhau tại H. Trên hai đoạn HB và HC lần lượt lấy 2 điểm M,N sao cho góc AMC = góc ANB= 90o. Chứng minh tam giác AMN cân.
3. Cho hình vuông ABCD có cạnh AB=1, P và Q lần lượt là các điểm thuộc AB và AD sao cho tam giác APQ có chu vi =2. Chứng minh góc PCQ=45o
cho tam giác nhọn abc có hai đường cao bd và cd cắt nhau tại h. trên hb và hc lần lượt lấy các điểm m,n, sao cho góc amc=góc anb=90 độ. a, nếu cd=4,md=6. tính ac
b, chứng tỏ 1/md^2+1/ne^2=1/mc^2+1/nb^2+1/a^2+1/na^2
c, chứng minh góc amn= góc anm
chợ tam giacABC có các góc đều nhọn.kẻ các đường cao BE và CF cắt nhau tại H.trên HB lấy điểm M và trên HC lấy điểm N sao cho góc AMC=goc ANB=90 độ. c/ m:AM=AN ?
Cho tam giác ABC nhọn, các đường cao BD, CE cắt nhau tại H. Gọi M,N là các điểm thuộc HB, HC sao cho AMC=ANB=90. Chứng mình tam giác AMN cân