\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{x-2}+\sqrt{x+2}\right)=0\)
=>x+2=0
=>x=-2
\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{x-2}+\sqrt{x+2}\right)=0\)
=>x+2=0
=>x=-2
Rút gọn biểu thức:
a) \(\dfrac{\sqrt{x^2+4x+4}}{x-1}\)
b) \(x-2y-\sqrt{x^2-4xy+4y^2}\) ( x>= 0; y>=0)
c) \(\dfrac{\sqrt{x^2+4x+4}}{x^2-4}\)
d) \(\dfrac{\sqrt{x^2+4x+4}}{x^2-2}\)
1) x-\(7\sqrt{x-3}\) -9=0 2) \(\sqrt{x+3}\) =5-\(\sqrt{x-2}\) 3) \(\sqrt{x-4\sqrt{x+4}}\) =3 4) \(\sqrt{8-\dfrac{2}{3}x}-5\sqrt{2}\) =0 5) \(\sqrt{x^2-4x+4}\) =2-x
\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
\(x+\sqrt{5-4x}=0\)
\(\sqrt{1-2x^2}=x-1\)
giải phương trình
1)\(\sqrt{9\left(x-1\right)}=21\)
2)\(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\)
3)\(\sqrt{2x}-\sqrt{50}=0\)
4)\(\sqrt{4x^2+4x+1}=6\)
5)\(\sqrt{\left(x-3\right)^2}=3-x\)
1.\(\sqrt{x^2-4x+3}=x-2\)
2.\(\sqrt{4x^2-4x+1}=x-1\)
3. \(2x-\sqrt{4x-1}=0\)
4. \(x-2\sqrt{x-1}=16\)
a) \(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\)
b) \(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)
c) \(\sqrt{x^2+6x-9}-2\sqrt{x^2-2x+1}+\sqrt{x^2}=0\)
a \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
b \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}=4\)
c \(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}=-4}\)
d \(\sqrt{9x+27}+4\sqrt{x+3}-\dfrac{3}{4}\sqrt{16x+48}=0\)
Giải pt
6) \(\sqrt{x^2-4x+1}=x\)
8) \(\sqrt{x^2-x-6}=\sqrt{x-3}\)
9) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
Điều kiện: \(2\le x\le4\)
\(\Leftrightarrow2\sqrt{x-2}-2\sqrt{2}+\sqrt{4-x}-\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow\sqrt{4x-8}-2\sqrt{2}+\sqrt{4-x}-\left(4-x\right)^2=0\)
\(\Leftrightarrow\frac{-4\left(4-x\right)}{\sqrt{4x-8}+2\sqrt{2}}+\sqrt{4-x}-\left(4-x\right)^2=0\)
\(\Leftrightarrow\sqrt{4-x}\left(\frac{-4\sqrt{4-x}}{\sqrt{4x-8}+2\sqrt{2}}+1-\sqrt{4-x}^3\right)=0\)
\(\Rightarrow\sqrt{4-x}=0\Rightarrow x=4\left(tmdk\right)\) hoặc \(\left(.......\right)=0\)vô nghiệm thì phải
Vậy nghiệm là x=4
Tìm x:
\(\sqrt{x^2-4}+\sqrt{x^2-4x+4}=0\)