Ta có: \(\sqrt{x}=15\)
\(\Rightarrow x=15.15\)
\(\Rightarrow x=225\)
Vậy \(x=225\)
Ta có: \(\sqrt{x}=15\)
\(\Rightarrow x=15.15\)
\(\Rightarrow x=225\)
Vậy \(x=225\)
cho biểu thức
A=\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{3+\sqrt{x}}\)
a, Rút gọn A
b, Tìm x để A= \(\frac{1}{2}\)
Tính
1, a = \(\sqrt[3]{45+26\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}\)
2, x = \(\sqrt[3]{4+\sqrt{80}-\sqrt[3]{\sqrt{80}-4}}\)
3, \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
4, \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
5, \(\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}+\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}\)
Cho biểu thức
A= \(\left(\frac{x-5\sqrt{x}}{x-25}-1\right):\left(\frac{25-x}{x+2\sqrt{x}-15}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
a, Rút gọn A
b, Tìm x để A<1
Rút gọn các biểu thức
a, \(\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\)
b, \(\frac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)
c, \(\frac{x+\sqrt{xy}}{y+\sqrt{xy}}\)
d, \(\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\)
1 Rút gọn
a \(\frac{\sqrt{10}+\sqrt{15}}{\sqrt{6}+\sqrt{12}}\)
b \(\frac{x+\sqrt{xy}}{y+\sqrt{xy}}\)
c \(\sqrt{a^2.\left(a-2\right)^2}\)
2 Tìm x
a \(\sqrt{19x}=15\)
b \(\sqrt{4x^2}=8\)
c) \(\sqrt{4\left(x+1\right)}=\sqrt{8}\)
d \(\sqrt{9\left(2-3x\right)^2}=6\)
Bài 3 giải phương trình :
a ) \(3\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\frac{x+1}{16}}=5\)
b ) \(\sqrt{x^2-4x+4}=2\)
c ) \(\sqrt{x^2-6x+9}=x-2\)
d ) \(\sqrt{x^2+4}=\sqrt{2x+3}\)
e ) \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)
f ) \(x+\sqrt{2x+15}=0\)
Cho biểu thức :
\(P=\left(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\frac{2x+4\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\right):\left(x+4\sqrt{x}+4\right)\) với \(x\ge0;x\ne1\)
a. Rút gọn P
b. Tính P khi \(\sqrt{x}=\sqrt{10+\sqrt{60}+\sqrt{24}+\sqrt{40}}-\sqrt{8+2\sqrt{15}}\)
c. Tìm x để \(\left|P\right|>P\)
giúp mk vs nha mk đag cần gấp
Tìm GTLN và GTNN của C=\(\sqrt{x-4}+\sqrt{y-3}\) với x+y=15
Tính
1, a = \(\sqrt[3]{45+29\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}\)
2, x = \(\sqrt[3]{4+\sqrt{80}-\sqrt[3]{\sqrt{80}-4}}\)
3, \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
4, \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
5,\(\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}+\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}\)