Rút gọn biểu thức: \(P=\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}-\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3}-\sqrt{5}}+\frac{\left(\sqrt{5}-1\right).\sqrt[3]{2+\sqrt{5}}}{\sqrt{28}-10\sqrt{3}+\sqrt{3}}\)
Giúp mk nha!
\(\frac{\sqrt{5}-\sqrt{2}}{\sqrt{3}}\left(\frac{2}{\sqrt{7}+\sqrt{3}}y-\frac{\sqrt{7}+\sqrt{11}}{\sqrt{5}}\right)=\frac{\sqrt{13}}{\sqrt{7}-3}y+\frac{\sqrt{5}-\sqrt{3}}{5-\sqrt{7}}\)
tìm y
so sánh : a) \(\sqrt{2}+\sqrt{11}\) và \(\sqrt{3}+5\)
b) \(\sqrt{21}-\sqrt{5}\) và \(\sqrt{20}-\sqrt{6}\)
Trong các số sau đây sô nào bằng \(\frac{3}{5}\)
a,\(\sqrt{\frac{3^2}{5^2}}\)
b,\(\frac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)
c,\(\frac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}\)
Rút gọn:\(C=\frac{1}{1+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{7}}+...+\frac{1}{\sqrt{2015}+\sqrt{2016}}\)
Rút gọn :
\(C=\frac{1}{1+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{7}}+...+\frac{1}{\sqrt{2015}+\sqrt{2017}}\)
Tính giá trị của biểu thức \(A=\left(3x^3+8x^2+2\right)^{2011}\)với \(x=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)
Tính:
a) \(\sqrt{\left(-5\right)^2}+\sqrt{5^2}-\sqrt{\left(-3\right)^2}-\sqrt{3^2}-\left(\sqrt{7}\right)^2\)
b) \(\left[\sqrt{4^2}\right]+\sqrt{\left(-4\right)^2}.\left(\sqrt{5}\right)^2-\sqrt{5^{-2}}\)
c) \(\sqrt{\left(-10\right)^2}+10.\left(-\sqrt{5}\right)^2\)
HỘ MK BÀI NÀY NHA MỌI NGƯỜI
Chứng tỏ
a, \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
b.\(\sqrt{2}+\sqrt{8}< \sqrt{3}+3\)
c,\(\sqrt{5}+\sqrt{10}>5,3\)
Tính giá trị của biểu thức:
a) \(\sqrt{49}+\sqrt{\left(-5\right)^2}-5\sqrt{1,44}+3\sqrt{\frac{4}{9}}\)
b) \(\left(2\sqrt{3}\right)^2-\left(3\sqrt{2}\right)^2+\left(4.\sqrt{0,5}\right)^2-\left(\frac{1}{5}.\sqrt{125}\right)^2\)