Giải phương trình sau
a) \(\sqrt{1-8x+16x^2}=\dfrac{1}{3}\)
b) \(\sqrt{16x-32}+\sqrt{25x-50}=18+\sqrt{9x-18}\)
\(\text{Giải PT: }\sqrt{5-x}-\sqrt{3x+1}=8x^2+16x-24\)
Giải phương trình:
\(16x^3+\left(8x^2-1\right)\sqrt{4x^2+1}=\frac{15}{16x+9}\)
Đặt \(y=2x+\sqrt{4x^2+1}\)
Giải pt : \(\sqrt{5-x}-\sqrt{3x+1}=8x^2+16x-24\)
\(8x^2+16x-20-\sqrt{x+15}=0\) 0
\(\sqrt{x+9}=\sqrt{x}+\frac{2\sqrt{2}}{\sqrt{x+1}}\)
Cho biểu thức B= \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}\) với \(x\ge-1\).
a) Rút gọn biểu thức B.
b) tìm x sao cho B có giá trị là 16.
giải phương trình
\(8x^2+16x-20-\sqrt{x+15}=0\)
\(\sqrt{x+9}=\sqrt{x}+\frac{2\sqrt{2}}{\sqrt{x+1}}\)
giải các phương trình sau:
\(1,\sqrt{18x}-6\sqrt{\dfrac{2x}{9}}=3-\sqrt{\dfrac{x}{2}}\)
\(2,\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\sqrt{27x}=-4\)
3, \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)
\(4,\sqrt{16x+16}-\sqrt{9x+9}=1\)
\(5,\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)
\(6,\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=\dfrac{-2}{3}\)
Gpt:
\(3\sqrt{2}-5\sqrt{8x}+\sqrt{18x}=28\)
\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}=16\sqrt{x+1}\)