cho m>0 và a,b,c là 3 số thực thoả mãn a/m+2 +b/m+1 +c/m=0 Chứng minh rằng phương trình ax^2+bx+c =0 luôn có nghiệm
Trên đường tròn lượng giác, tập nghiệm của phương trình cos2x + 3sinx – 2 = 0 được biểu diễn bởi bao nhiêu điểm ?
A. 1. B. 4.
C. 2. D. 3.
Giải các pt: A, cos(4x + π/3)=✓3/2. ;. B, sin^2x-3sin3x+2=0. ;. C, tan(2x+10°)=√3. ;. D, tanx.cot2x=1
a) Cosx =√3 b) cosx = -1/3 c) tanx -2 = 0
Bài 1: Phương trình căn 2 cot x + căn 2=0 có tổng các nghiệm khi k =0 và k=1?
A.3pi/4 B.5pi/4 C.4pi/3 D.pi/2Bài 2:cho sin a=1/3,0<a<pi/2 tính sin( a-pi/4) Bài 3:cho cos a=-2/3,pi/2<a<pi tính cos ( a+pi/3)
Giúp vs bạn
Cho 1/3(m-1)x³-(m-1)x²+(m-3)x+2. Tìm m để a)y'=0 có 2 nghiệm phân biệt cùng dương b)y'=0 có 2 nghiệm phân biệt trái dấu c)y'=0 có 2 nghiệm phân biệt|x1-x2|= căn 2 d)y' lớn hơn hoặc bằng 0 với mọi x e)y' nhỏ hơn hoặc bằng 0 với mọi x
Cho 1/3(m-1)x³-(m-1)x²+(m-3)x+2. Tìm m để a)y'=0 có 2 nghiệm phân biệt cùng dương b)y'=0 có 2 nghiệm phân biệt trái dấu c)y'=0 có 2 nghiệm phân biệt|x1-x2|= căn 2 d)y' lớn hơn hoặc bằng 0 với mọi x e)y' nhỏ hơn hoặc bằng 0 với mọi x
tìm các giá trị lượng giác còn lại
a) \(tanx=\dfrac{3}{2},\pi< x< \dfrac{3\pi}{2}\)
b) \(tanx=\dfrac{\sqrt{3}}{3},0< x< 90\)
c) \(cotx=-\dfrac{1}{\sqrt{3}},\dfrac{3\pi}{2}< x< 2\pi\)
Chứng minh rằng các phương trình sau luôn có nghiệm: a)x^5 - 3x+3=0 b)x^5+x-1=0 c)x^4+x^3-3x^2+x+1=0
Biết rằng b>0, a+3b=9 và\(x\underrightarrow{lim}0\)\(\frac{\sqrt[3]{ax+1}-\sqrt{1-bx}}{x}=2\). Khẳng định nào dưới đây sai?
A. 1<a<3. B. b>1. C. a2+b2>12 D. b-a<0