Có :`ƯCLN(36 ; 24) = 12`
\(5^{36}=5^{3.12}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=11^{2.12}=\left(11^2\right)^{12}=121^{12}\)
Vì `125 > 121`
`=> 125^12 > 121^12`
Hay `5^36>11^24`
Vậy `5^36 > 11^24`
`5^23 và 6 . 5^22`
có : `5^23 = 5 . 5^22`
Vì `6 >5 ; 5^22 = 5^22`
`=> 6 . 5^22 > 5 . 5^22`
Hay `6 . 5^22 > 5^23`
Vậy `6 . 5^22 > 5^23`
a: \(5^{36}=\left(5^3\right)^{12}=125^{12};11^{24}=\left(11^2\right)^{12}=121^{12}\)
mà 125>121
nên \(5^{36}>11^{24}\)
b: \(5^{23}=5\cdot5^{22}< 6\cdot5^{22}\)