\(A=\dfrac{cos^2a-sin^2a}{\dfrac{cos^2a}{sin^2a}-\dfrac{sin^2a}{cos^2a}}-cos^2a=\dfrac{cos^2a.sin^2a\left(cos^2a-sin^2a\right)}{\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)}-cos^2a\)
\(=cos^2a.sin^2a-cos^2a=cos^2a\left(sin^2a-1\right)=-cos^4a\)
\(B=\sqrt{\left(1-cos^2a\right)^2+6cos^2a+3cos^4a}+\sqrt{\left(1-sin^2a\right)^2+6sin^2a+3sin^4a}\)
\(=\sqrt{4cos^4a+4cos^2a+1}+\sqrt{4sin^4a+4sin^2a+1}\)
\(=\sqrt{\left(2cos^2a+1\right)^2}+\sqrt{\left(2sin^2a+1\right)^2}\)
\(=2\left(sin^2a+cos^2a\right)+2=4\)