`B=(\sqrtx-1)/(\sqrtx)+(2\sqrtx+1)/(x+\sqrtx)`
`B=(\sqrtx-1)/(\sqrtx)+(2\sqrtx+1)/(\sqrtx(\sqrtx+1))`
`B=(x-1+2\sqrtx+1)/(\sqrtx(\sqrtx+1))`
`B=(x+2\sqrtx)/(\sqrtx(\sqrtx+1))`
`B=(\sqrtx(\sqrtx+2))/(\sqrtx(\sqrtx+1))`
`B=(\sqrtx+2)/(\sqrtx+1)`
\(B=\dfrac{x-1+2\sqrt{x}+1}{x+\sqrt{x}}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)