Ta có: \(B=4^{2017}+4^{2016}+...+4^2+4^1+4^0\)
\(\Leftrightarrow4\cdot B=4^{2018}+4^{2017}+...+4^3+4^2+4^1\)
\(\Leftrightarrow3\cdot B=4^{2018}-1\)
\(\Leftrightarrow A=165\cdot\dfrac{4^{2018}-1}{3}+55\)
\(\Leftrightarrow A=4^{2018}\)
Ta có: \(B=4^{2017}+4^{2016}+...+4^2+4^1+4^0\)
\(\Leftrightarrow4\cdot B=4^{2018}+4^{2017}+...+4^3+4^2+4^1\)
\(\Leftrightarrow3\cdot B=4^{2018}-1\)
\(\Leftrightarrow A=165\cdot\dfrac{4^{2018}-1}{3}+55\)
\(\Leftrightarrow A=4^{2018}\)
1) Tìm giá trị lớn nhất nhỏ nhất của hàm số: \(f\left(x\right)=x+\frac{4}{x}\)với \(1\le x\le3\)
2) Rút gọn \(A=\sqrt{\frac{2015x+2016}{2016x-2015}}+\sqrt{\frac{2015x+2016}{2015-2016x}}+2017\)
a, tính GT của đa thức \(f\left(x\right)=\left(x^4-3x+1\right)^{2016}\) tại \(x=9-\dfrac{1}{\sqrt{\dfrac{9}{4}-\sqrt{5}}}+\dfrac{1}{\sqrt{\dfrac{9}{4}+\sqrt{5}}}\)
b, so sánh \(\sqrt{2017^2-1}-\sqrt{2016^2-1}và\dfrac{2.2016}{\sqrt{2017^2-1}-\sqrt{2016^2-1}}\)
c, tính GTBT: \(sinx.cosx+\dfrac{sin^2x}{1+cotx}+\dfrac{cos^2x}{1+tanx}\)
d, biết \(\sqrt{5}\) là số hữu tỉ, hãy tìm các số nguyên a,b tm::
\(\dfrac{2}{a+b\sqrt{5}}-\dfrac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
giúp vs
1)a) n thuộc N*: rút gọn:
K = \(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}\)
b) tính
I = \(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2015^2}+\frac{1}{2016^2}}+\sqrt{1+\frac{1}{2016^2}+\frac{1}{2017^2}}\)2) A= \(\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)
a) rút gọn A
b) tìm x đề A=1
3) rút gọn B = \(\sqrt{x+\sqrt{2x-1}}-\sqrt{x-\sqrt{2x-1}}\)
4) tính: \(\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\)
C= \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
Giải pt
1)x+y+z+8=\(2\sqrt{x-1}\)+\(4\sqrt{y-2}\)+\(6\sqrt{z-3}\)
2)\(\sqrt{x}+\sqrt{x+1}=1\)
3)\(\left(1+\sqrt{x^2+2017+2016}\right)\)\(\left(\sqrt{2016+x}-\sqrt{x+1}\right)\)=2015
1, Rút gọn biểu thức: \(A=\dfrac{-3}{4}.\sqrt{9-4\sqrt{5}}.\sqrt{\left(-8\right)^2.\left(2+\sqrt{5}\right)^2}\)
2, Với \(x=\sqrt{4+2\sqrt{3}}\). Tính giá trị biểu thức \(P=x^2-2x+2020\)
Rút gọn: \(S=\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(2004^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(2005^4+\frac{1}{4}\right)}\)
Rút gọn biểu thức
a) A=\(2\sqrt{\left(2-\sqrt{5}\right)^2}-\dfrac{8}{3-\sqrt{5}}\)
b) B= \(\left(\dfrac{2\sqrt{x}}{x-4}-\dfrac{1}{\sqrt{x}+2}\right):\left(1+\dfrac{2}{\sqrt{x}-2}\right)\) Với x>0, x khác 4
Câu 1: Rút gọn biểu thức sau:
a.\(\sqrt{36\left(x-5\right)^2}\)
b. \(\sqrt{\dfrac{1}{4}\left(1-x\right)^2}\)
c.\(\sqrt{x^2\left(2x-4\right)^2}\)
\(\frac{5\left(x-y\right)^4-3\left(x-y\right)^3+4\left(x-y\right)^2}{\left(y-x\right)^2}\)
RÚT GỌN