Lời giải:
a. ĐKXĐ: $x>0; x\neq 1$
b. \(P=\left[\frac{x}{\sqrt{x}(\sqrt{x}-1)}-\frac{1}{\sqrt{x}(\sqrt{x}-1)}\right]: \left[\frac{\sqrt{x}-1}{(\sqrt{x}-1)(\sqrt{x}+1)}+\frac{2}{(\sqrt{x}-1)(\sqrt{x}+1)}\right]\)
\(=\frac{x-1}{\sqrt{x}(\sqrt{x}-1)}:\frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}-1)}:\frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)} =\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{1}{\sqrt{x}-1}=\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}}=\frac{x-1}{\sqrt{x}}\)
c.
$P<0\Leftrightarrow \frac{x-1}{\sqrt{x}}<0$
$\Leftrightarrow x-1<0$
$\Leftrightarrow x<1$. Kết hợp đkxđ suy ra $0< x<1 $