Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
NinhTuấnMinh

Cho biểu thức:\(M=\left(\dfrac{x-\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x}\)
a) tìm điều kiện để M có nghĩa
b)rút gọn M
c)tìm giá trị nhỏ nhất của M

Nguyễn Hoàng Minh
4 tháng 9 2021 lúc 9:38

\(a,b,M=\left(\dfrac{x-\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x}\left(x\ge0;x\ne0;x\ne1\right)\\ M=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{x}{\sqrt{x}+1}\\ M=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\cdot\dfrac{x}{\sqrt{x}+1}\\ M=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\cdot\dfrac{x}{\sqrt{x}+1}=\sqrt{x}\left(\sqrt{x}-1\right)\)

\(c,M=\sqrt{x}\left(\sqrt{x}-1\right)=x-\sqrt{x}\\ =x-\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu \("="\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)

 

Nguyễn Tiến Đạt
4 tháng 9 2021 lúc 9:46

\(M=\left(\dfrac{x-\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x}\)

ĐKXĐ: \(x>0;x\ne1\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1}{x}\)

\(=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right).\dfrac{x}{\sqrt{x}+1}\)

\(=\dfrac{x-1}{x}.\dfrac{x}{\sqrt{x}+1}\)

\(=\sqrt{x}-1\)


Các câu hỏi tương tự
Chau Pham
Xem chi tiết
Nguyễn Đan Xuân Nghi
Xem chi tiết
Nguyễn Thị Thu
Xem chi tiết
Chau Pham
Xem chi tiết
kakaruto ff
Xem chi tiết
Yết Thiên
Xem chi tiết
❤X༙L༙R༙8❤
Xem chi tiết
Đào Anh Khoa
Xem chi tiết
tranthuylinh
Xem chi tiết