Trên tập số phức, cho phương trình sau : ( z + i)4 + 4z2 = 0. Có bao nhiêu nhận xét đúng trong số các nhận xét sau?
1. Phương trình vô nghiệm trên trường số thực R.
2. Phương trình vô nghiệm trên trường số phức C
3. Phương trình không có nghiệm thuộc tập số thực.
4. Phương trình có bốn nghiệm thuộc tập số phức.
5. Phương trình chỉ có hai nghiệm là số phức.
6. Phương trình có hai nghiệm là số thực
A. 0.
B. 1.
C. 3.
D. 2.
Phương trình (z +i)( z + i2)... (z + i100) = 0 có bao nhiêu nghiệm phức phân biệt?
A. 100 nghiệm.
B. 25 nghiệm.
C. 10 nghiệm.
D. 4 nghiệm.
Biết phương trình z 2 + a z + b = 0 có một nghiệm là z = - 2 + i Tính a+b
A. 9
B. 1
C. 4
D. -1
Phương trình: ( z + 3 - i ) 2 - 6(z + 3 - i) + 13 = 0 có 2 nghiệm phân biệt. Khẳng định nào sau đây là đúng?
A. Trong 2 nghiệm có một nghiệm bằng 0.
B. Cả 2 nghiệm đều là số thực.
C. Cả 2 nghiệm đều là số thuần ảo.
D. Trong 2 nghiệm có 1 nghiệm là số thực, 1 nghiệm là số thuần ảo.
Phương trình z 2 + a z + b = 0 có nghiệm phức z = 1 + i Tìm a,b
Phương trình z 2 + az + b = 0 có nghiệm phức z = 1 + i. Tìm a, b.
A. a = b = -2
B. a = -2, b = 2
C. a = 1, b = 2
D. a = b = 2
Phương trình z 2 + a z + b = 0 có một nghiệm phức là z = 1 + 2 i . Tổng 2 số a và b bằng:
A. 0
B. -3
C. 3
D. -4
Phương trình z 2 + a z + b = 0 có một nghiệm phức là z = 1 + 2 i . Tổng 2 số a và b bằng:
A. 0
B. -3
C. 3
D. -4
Phương trình z - 1 i z - 1 i 2 . . . z - 1 i 20 = 0 có bao nhiêu nghiệm?
A. Có 20 nghiệm
B. Có 10 nghiệm
C. Có 2 nghiệm
D. Có 4 nghiệm
Biết phương trình z 2 + a z + b = 0 ( a , b ∈ ℝ ) có một nghiệm là: z=-2+i. Tính a-b.
A. 9
B. 1
C. 4
D. -1