Cho hàm số y = sin4x
a) Chứng minh rằng sin4(x + kπ/2) = sin4x với k ∈ Z
Từ đó vẽ đồ thị của hàm số
y = sin4x; (C1)
y = sin4x + 1. (C2)
b) Xác định giá trị của m để phương trình: sin4x + 1 = m (1)
- Có nghiệm
- Vô nghiệm
c) Viết phương trình tiếp tuyến của (C2) tại điểm có hoành độ x 0 = π / 24
Tìm tất cả các giá trị thực của tham số m để phương trình sinx=m có nghiệm;
A. -1 ≤ m ≤1.
B. m ≤1.
C. m ≤-1.
D. m ≥-1.
Có bao nhiêu giá trị nguyên của m để pt sin2 x - sinx - 3 -m = 0 có nghiệm duy nhất thuộc [-π/2;π/2]
Tìm tất cả giá trị của tham số m để phương trình \(\left(sinx-2m+1\right)\left(2cosx-1\right)=0\)
a) Có 2 nghiệm thuộc \([-\dfrac{\pi}{2};\dfrac{5\pi}{6}]\)
b) Có 3 nghiệm thuộc \([-\dfrac{\pi}{2};\dfrac{5\pi}{6}]\)
Tìm giá trị của m để phương trình \(\dfrac{sinx-m}{2cosx+\sqrt{3}}=0\) có đúng hai nghiệm thuộc \((0;\dfrac{5\pi}{2}]\)
Cho phương trình sau: sin3x-sinx+cos2x=1. Phương trình có họ nghiệm x = π a + k 2 π 3 , k ∈ Z hỏi giá trị của a.
A.1
B.6
C.3
D.4
Tập hợp các giá trị của m để phương trình \(2\cos^2x-sinx+1-m=\)0 có đúng 5 nghiệm thuộc \([0;\frac{5\pi}{2})\)là nửa khoảng (a;b]. Tính tổng a + b.
Cho phương trình sau: sin3x-sinx+cos2x=1.Phương trình có họ nghiệm x = π α + k 2 π α ; k ∈ Z hỏi giá trị của α :
A.1
B.6
C.3
D.4