Cho x,y,z\(\ne\)0 thỏa mãn xy+yz+xz=0. Tính M=\(\dfrac{yz}{x^2}+\dfrac{zx}{y^2}+\dfrac{xy}{z^2}\)
cho 3 số x,y,z thỏa mãn x^2+y^2 +z^2=xy+yz+xz và x+y+z=-3 .Tính B = x^2020 +y^2021+z^2022
a) cho 1/x + 1/y +1/z =0.tính A=yz/x2 +xz/y2 + xy/ z2
Thực hiện phép tính
a, (x^2+x-6/x^2+4x+3).(x^3-4x-5/x^2-10x-25)
b, x(y^2-z)-y(x-xy)/(x-y)^2+(y-z)^2+(z-x)^2 ÷ xy^2-xz(2y-z)/2(x^3-y^3-z^3-3xyz)
Cho các số dương x,y,z là các số thực dương thỏa mãn: xyz = 1.
CMR: \(\frac{1}{x+y+z}+\frac{1}{3}\ge\frac{2}{xy+yz+xz}\)
Cho x, y, z đôi một khác nhau và \(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)+\(\dfrac{1}{z}\) = 0
Tính giá trị của biểu thức: M = \(\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
Giúp mk giải bài này với, khó quá :((
cho x+y+z=3. Tìm giá trị nhỏ nhất của biểu thức P=x^2+y^2+z^2+xy+yz+xz
Cho x, y, z đôi một khác nhau và 1/x + 1/y + 1/z = 0
Tính giá trị của biểu thức: A = yz/(x2 + 2yz) + xz/(y2 + 2xz) + xy/(z2 + 2xy)
Cho A=\((\frac{x^2+y^2}{x^2y^2}-\frac{1}{z^2}).\left(\frac{y^2+z^2}{y^2z^2}-\frac{1}{z^2}\right)\left(\frac{z^2+x^2}{z^2x^2}-\frac{1}{y^2}\right)\)
Biết \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\). CMR: A luôn có giá trị âm với mọi x, y, z khác 0.