\(P=a\left(b-c\right)^3+b\left(c-a\right)^3+c\left(a-b\right)^3\)
Đặt \(\left\{{}\begin{matrix}x=b-c\\y=c-a\\z=a-b\end{matrix}\right.\) \(\left(1\right)\)
\(\Rightarrow P=ax^3+by^3+cz^3\)
Ta lại có :
\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(\left(1\right)\Rightarrow x+y+z=0\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)
\(\Rightarrow P=ax^3+by^3+cz^3=3axyz\)
\(\Rightarrow P=a\left(b-c\right)^3+b\left(c-a\right)^3+c\left(a-b\right)^3=3a\left(b-c\right)\left(c-a\right)\left(a-b\right)\)