\(81x^2-6yz-9y^2-z^2=81x^2-\left(6yz+9y^2+z^2\right)\)
\(=81x^2-\left(9y^2+6xy+z^2\right)=81x^2-\left(3y+z\right)^2\)
\(=\left(9x-3y-z\right)\left(9x+3y+z\right)\)
\(81x^2-6yz-9y^2-z^2=81x^2-\left(6yz+9y^2+z^2\right)\)
\(=81x^2-\left(9y^2+6xy+z^2\right)=81x^2-\left(3y+z\right)^2\)
\(=\left(9x-3y-z\right)\left(9x+3y+z\right)\)
Bài 3 : Phân tích đa thức thành nhân tử
a, x3 + 4x2 + 4x -xz2
b, x3 - 4x2 + 4x - 9y2
Phân tích các đa thức thành nhân tử
a)6x3y2.(2-x)+9x2y2.(x-2)
b)x2-4x+4y-y2
c)81x2+6yz-9y2-z2
phân tích đa thức thành nhân tử
a) 1+6x-6x2-x3
b) x3-4x2+8x-8
c) x3+2x2+2x+1
d) 8x3-12x2+6x-1
Phân tích đa thức thành nhân tử:
a)x2-4xy+x-4y
b)x2-6xy+9y2-4
c)x3-4x2-12x+27
bài 3 phân tích đa thức sau thành nhân tử
a 4x2 -16 + (3x +12) (4-2x)
b x3 + X2Y -15x -15y
c 3(x+8) -x2 -8x
d x3 -3x2 + 1 -3x
e 5x2 -5y2 -20x + 20y
kkk =0)
Phân tích các đa thức sau thành nhân tử:
a ) x 3 + 4 x 2 – 2 x – 8
Bài 1: Phân tích đa thức thành nhân tử: a) 4y3 + 16y2 + 16y b) 8x2-48x+6xy-36y c) 8x2-48x-6xy+36y d) a2 –2ab+b2 –4 e) 4–x2 –4xy–4y2 f) 8a2 –16a+8ax–16x g) 16–4x2 +8xy–4y2 h) –4x2 –16xy–16y2 Bài 2: Tìm x, biết: a) x3 – 6x2 + 9x = 0 b) 5x(x–6)+3x–18=0 c) 5x(x – 6) – 18 + 3x = 0 d) 5x(x – 6) – 3x + 18 = 0 e) (2x – 3)2 = (5 – x)2 f) (2x + 1)2 = (3x – 2)2 g) 16(2x–3)=-25x2 (3–2x)
a) Chứng minh nếu x + y + z = 0 thì x 3 + y 3 + z 3 = 3xyz.
b) Áp dụng. Phân tích các đa thức sau thành nhân tử:
P = ( a 2 + b 2 ) 3 + ( c 2 - a 2 ) 3 - ( b 2 + c 2 ) 3 .
Phân tích đa thức thành nhân tử:
a) 50x5-8x3
b) x4-5x2-4y2+10y
c) 36a2-b2+12a+1
d) x3+y3-xy2-x2y
e) 4x2+4x-3
f) 9x4+16x2-4
g) -6x2+5xy+4y2
h)(x2+4x)2+8(x2+4x)+15
i) 9x4+5x2+1
Câu 1.(1,5 điểm) Phân tích các đa thức sau thành nhân tử:
a) 15x – 5xy b) (x2 + 1)2 – 4x2 c) x2 – 10x – 9y2 + 25