a: \(=6y\left(2x^2-3xy-5y\right)\)
b: \(=\left(x-y\right)\left(5-y\right)\)
c: \(=y\left(x-z\right)-7\left(x-z\right)=\left(x-z\right)\left(y-7\right)\)
a: \(=6y\left(2x^2-3xy-5y\right)\)
b: \(=\left(x-y\right)\left(5-y\right)\)
c: \(=y\left(x-z\right)-7\left(x-z\right)=\left(x-z\right)\left(y-7\right)\)
Phân tích đa thức thành nhân tử
\(27x^3-\dfrac{1}{8}y^3\)
a. \(\left(3x-\dfrac{1}{2}y\right)\left(9x^2+\dfrac{3}{2}xy+\dfrac{1}{4}x^2\right)\)
b. \(\dfrac{1}{8}\left(216x^3-y^3\right)=\dfrac{1}{8}\left(6x-y\right)\left(36x^2+6xy+y^2\right)\)
cách phân tích nào đúng a hay b giải thích vì sao
Giải hệ bằng phương pháp phân tích đa thức thành nhân tử
a) \(\left\{{}\begin{matrix}xy+x-2=0\\2x^3-x^2y+x^2+y^2-2xy-y=0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2-2xy+x+y=0\\x^4-4x^2y+3x^2+y^2=0\end{matrix}\right.\)
Phân tích đa thức thành nhân tử: \(4\left(1+x\right)\left(1+y\right)\left(1+x+y\right)-3x^2y^2\)
phân tích đa thức \(\dfrac{1}{2}x^2-2y^2\) thành nhân tử
a. \(\dfrac{1}{2}x^2-2y^2=\dfrac{1}{2}\left(x^2-4y^2\right)=\dfrac{1}{2}\left(x-2y\right)\left(x+2y\right)\)
b. \(\dfrac{1}{2}x^2-2y^2=2\left(\dfrac{1}{4}x^2-y^2\right)=2\left(\dfrac{1}{2}x-y\right)\left(\dfrac{1}{2}x+y\right)\)
Cách phân tích nào đúng, a hay b ?
ta có : \(x^2+1=x^2+xy+yz+zx=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(x+z\right)\)
Tương tự ta đc \(y^2+1=\left(y+x\right)\left(y+z\right)\)
\(z^2+1=\left(z+x\right)\left(z+y\right)\)
ĐẶt \(A=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{\left(1+y^2\right)}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{\left(1+z^2\right)}}\)
\(\Rightarrow A=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\frac{\left(z+x\right)\left(z+y\right)\left(x+y\right)\left(x+z\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)\left(y+x\right)}{\left(z+x\right)\left(z+y\right)}}\)
\(\Rightarrow A=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)=2\left(xy+yz+zx\right)=2\)
Giải hệ bằng phương pháp phân tích nhân tử
a) \(\left\{{}\begin{matrix}\dfrac{1}{x^2}+\dfrac{1}{y^2}=1\\\sqrt{x^2-1}+\sqrt{y^2-1}=\sqrt{xy+2}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+y^2\right)=13\\\left(x+y\right)\left(x^2-y^2\right)=25\end{matrix}\right.\)
Phân tích đa thức thành nhân tử : \(4^2y^2\left(2x+y\right)+y^2z^2\left(z-y\right)-4z^2x^2\left(2x+z\right)\)
Phân tích thành nhân tử : \(x\left(y+z\right)^2+y\left(x+z\right)^2+z\left(x+y\right)^2-4xyz\)
1. Phân tích đa thức thành nhân tử:
\(x^5-x^4+\left(y+2\right)x^3+\left(y-2\right)x^2+yx+y^2\)
2. Cho các số dương thỏa mãn:
\(\dfrac{b+c}{a^2}+\dfrac{c+a}{b^2}+\dfrac{a+b}{c^2}=2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Tính giá trị biểu thức sau: \(P=\left(a-b\right)^{2009}+\left(b-c\right)^{2009}+\left(c-a\right)^{2009}\)
3. Cho x,y,x đôi một khác nhau và khác 0. Chứng minh rằng nếu:
\(\dfrac{x^2-yz}{a}=\dfrac{y^2-xz}{b}=\dfrac{z^2-xy}{c}\) thì ta có:
\(\dfrac{a^2-bc}{x}=\dfrac{b^2-ca}{y}=\dfrac{c^2-ab}{z}\)
Giải hệ bằng phương pháp phân tích nhân tử
a) \(\left\{{}\begin{matrix}x^2+2y=xy+4\\x^2-x-3-x\sqrt{6-x}=\left(y-3\right)\sqrt{y-3}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2-2xy+x+y=0\\x^4-4x^2y+3x^2+y^2=0\end{matrix}\right.\)