Cho F(x) là một nguyên hàm của hàm số f ( x ) = 1 x - 1 thỏa mãn F(5)=2 và F(0)=1. Tính F(2)-F(-1)
A. 1+ln2
B. 0
C. 1-3ln2
D. 2+ln2
Cho F(x) là một nguyên hàm của hàm số f x = 1 + x − 1 − x trên tập và thỏa mãn F 1 = 3 ; F - 1 = 2 ; F - 2 = 4 ; Tính tổng T = F 0 + F 2 + F − 3 .
A. 8
B. 12
C. 14
D. 10
Gọi F(x) là một nguyên hàm của hàm số f (x)= 2 x thỏa mãn F ( 0 ) = 1 ln 2 . Tính giá trị biểu thức T = F ( 0 ) + F ( 1 ) + F ( 2 ) + . . . + F ( 2017 ) .
A. T = 1009 . 2 2017 + 1 ln 2
B. T = 2 2017 . 2018
C. T = 2 2017 - 1 ln 2
D. T = 2 2018 - 1 ln 2
Cho F(x) là một nguyên hàm của hàm số f x = 1 x - 1 thỏa mãn F(5) = 2 và F(0) = 1. Mệnh đề nào dưới đây đúng?
A. F - 1 = 2 - ln 2
B. F 2 = 2 - 2 ln 2
C. F 3 = 1 + ln 2
D. F - 3 = 2
Cho F(x) là nguyên hàm của f ( x ) = 1 x + 2 thỏa mãn F(2)=4. Giá trị F(-1) bằng
A. 3
B. 1
C. 2 3
D. 2
Cho F(x) là một nguyên hàm của hàm số f(x) thỏa mãn ∫ 0 1 f x d x = 2 v à F 0 = 1 . Giá trị của F(1) là:
A. 2
B. 4
C. 3
D. 1
Cho f(x)= x x 2 + 1 ( 2 x 2 + 1 + 2017 ) , biết F(x) là một nguyên hàm của f(x) thỏa mãn F(0)=2018. Tính F(2)
A. F(2) = 5+2017 5
B. F(2) = 4+2017 4
C. F(2) = 3+2017 3
D. F(2)= 2022
Cho hàm số f(x) có đạo hàm dương, liên tục trên đoạn [0; 1] thỏa mãn điều kiện f(0)=1 và 3 ∫ 0 1 [ ( f ' ( x ) . f ( x ) ) 2 + 1 9 ≤ 2 ∫ 0 1 f ' ( x ) . f ( x ) d x . Tính ∫ 0 1 [ f ( x ) ] 3
A. 3/2
B. 5/4
C. 5/6
D. 7/6
Cho hàm số y=f(x) có đạo hàm liên tục trên ( 0 ; + ∞ ) thỏa mãn f ' ( x ) + f ( x ) x = 4 x 2 + 3 x và f(1)=2. Phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ x = 2 là x
A. y = 16x+20.
B. y = -16x+20
C. y = -16x-20
D. y = 16x-20.