Một khúc gỗ có dạng khối nón có bán kính đáy r = 30cm, chiều cao h = 120cm. Anh thợ mộc chế tác khúc gỗ đó thành một khúc gỗ có dạng khối trụ như hình vẽ.
Gọi V là thể tích lớn nhất của khúc gỗ dạng khối trụ có thể chế tác được. Tính V.
A. V = 0 , 16 π m 3 .
B. V = 0 , 024 π m 3 .
C. V = 0 , 36 π m 3 .
D. V = 0 , 016 π m 3 .
Đáp án D
Gọi r 0 ; h 0 lần lượt là bán kính đáy và chiều cao của khối trụ.
Theo giả thuyết, ta có:
r 0 r = h − h 0 h ⇔ r 0 = 30. 120 − h 0 120 = 30 − h 0 4
Suy ra thể tích khối trụ là:
V = π r 0 2 . h 0 = π 30 − h 0 4 2 . h 0 = π . 120 − h 0 2 . h 0 16
Xét hàm số f t = t 120 − t 2 với t ∈ 0 ; 120 suy ra: max 0 ; 120 f t = 256000
Vậy thể tích lớn nhất của khối trụ là:
V max = π 256000 16 . 1 100 3 = 0 , 016 π c m 3