Một hội nghị gồm 6 đại biểu nước A, 7 đại biểu nước B và 7 đại biểu nước C, trong đó mỗi nước có hai đại biểu là nữ. Chọn ngẫu nhiên ra 4 đại biểu, xác suất để chọn được 4 đại biểu để mỗi nước đều có ít nhất một đại biểu và có cả đại biểu nam và đại biểu nữ bằng
A. 46/95.
B. 3844/4845.
C. 49/95.
D. 1937/4845
Chọn D.
Chọn ngẫu nhiên 4 đại biểu có: C 20 4 cách chọn.Chọn ra 4 đại biểu có đủ 3 nước dẫn đến 3 trường hợp:
1) 2A – 1B – 1C, 1A – 2B – 1C, 1A – 1B – 2C dẫn đến có C 6 2 . 7 . 7 + 6 . C 7 2 . 7 + 6 . 7 . C 7 2 = 2499 cách.
2) Xét bài toán chọn 4 đại biểu đủ cả 3 nước mà toàn nam, dẫn đến các trường hợp:2A – 1B – 1C, 1A – 2B – 1C, 1A – 1B – 2C được C 4 2 . 5 . 5 + 4 . C 5 2 . 5 + 4 . 5 . C 5 2 = 550 cách.
3) Xét bài toán chọn 4 người đủ cả 3 nước toàn nữ: tương tự ta được 12 cách.
4) Vậy số trường hợp chọ được 4 đại biểu để mỗi nước đều có ít nhất một đại viểu và có cat đại biểu nam và đại biểu nữ là: 2499 – 550 – 12 = 1937
Vậy P= 1937 4845