3x.(x-2)-x2+2x=0
⇔3x2-6x-x2+2x=0
⇔2x2-4x=0
⇔2x(x-2)=0
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
vậy x=0 và x=2
3x(x-2)-x^2+2x=0
<=>3x(x-2)-x(x-2)=0
<=>(3x-x)(x-2)=0
<=>2x(x-2)=0
<=>2x=0 hoặc x-2=0
<=>x=0 hoặc x=2
\(3x\left(x-2\right)-x^2+2x=0\Rightarrow3x\left(x-2\right)-x\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(3x-x\right)=0\Rightarrow\left[{}\begin{matrix}x-2=0\\2x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
Ta có: \(3x\left(x-2\right)-x^2+2x=0\)
\(\Leftrightarrow2x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)