1) \(\sqrt{4+x}=2-x\) (ĐK: \(x\ge-4\))
\(\Leftrightarrow4+x=\left(2-x\right)^2\)
\(\Leftrightarrow4+x=4-4x+x^2\)
\(\Leftrightarrow x^2-4x-x+4-4=0\)
\(\Leftrightarrow x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)
Vậy: \(S=\left\{0;5\right\}\)
2)
a) ĐKXĐ: \(a>0,a\ne1\)
\(A=\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}+1}{a+\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a}\)
\(A=\left[\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right]\cdot\dfrac{a}{\sqrt{a}+1}\)
\(A=\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\cdot\dfrac{a}{\sqrt{a}+1}\)
\(A=\dfrac{a-1}{\sqrt{a}}\cdot\dfrac{a}{\sqrt{a}+1}\)
\(A=\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}}\cdot\dfrac{\sqrt{a}\cdot\sqrt{a}}{\sqrt{a}+1}\)
\(A=\sqrt{a}\left(\sqrt{a}-1\right)\)
\(A=a-\sqrt{a}\)
b) Ta có:
\(A=a-\sqrt{a}\)
\(A=\left(\sqrt{a}\right)^2-2\cdot\dfrac{1}{2}\cdot\sqrt{a}+\dfrac{1}{4}-\dfrac{1}{4}\)
\(A=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)
Mà: \(\left(\sqrt{a}-\dfrac{1}{2}\right)^2\ge0\) nên \(A=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Dấu "=" xảy ra khi:
\(\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}=-\dfrac{1}{4}\)
\(\Leftrightarrow a=\dfrac{1}{4}\)
Vậy: \(A_{min}=-\dfrac{1}{4}\)khi \(a=\dfrac{1}{4}\)