Gọi thời gian vòi 1 chảy riêng đầy bể là x(giờ)
thời gian vòi 2 chảy riêng đầy bể là y(giờ)
(Điều kiện: x>0;y>0)
Trong 1 giờ, vòi 1 chảy được \(\dfrac{1}{x}\left(bể\right)\)
Trong 1 giờ, vòi 2 chảy được \(\dfrac{1}{y}\left(bể\right)\)
Trong 1 giờ, hai vòi chảy được: \(\dfrac{1}{6}\left(bể\right)\)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\)(1)
Trong 2 giờ, vòi 2 chảy được: \(\dfrac{2}{y}\left(bể\right)\)
Vì khi mở vòi 1 chảy 1 giờ và vòi 2 chảy 1+1=2 giờ thì ta được 1/3 bể nên ta có phương trình:
\(\dfrac{1}{x}+\dfrac{2}{y}=\dfrac{1}{3}\)(2)
Từ (1) và (2) ta sẽ có hệ phương trình sau:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{1}{x}+\dfrac{2}{y}=\dfrac{1}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{1}{y}=-\dfrac{1}{6}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=6\end{matrix}\right.\)
Vậy: Vòi 1 cần 6 giờ để chảy riêng đầy bể
Vòi 2 cũng cần 6 giờ để chảy riêng đầy bể