\(\lim\dfrac{3^n-4.6^n}{2.6^n+3.4^n}=\lim\dfrac{\left(\dfrac{3}{6}\right)^n-4}{2+3\left(\dfrac{4}{6}\right)^n}=\dfrac{0-4}{2+3.0}=-2\)
\(\lim\dfrac{3^n-4.6^n}{2.6^n+3.4^n}=\lim\dfrac{\left(\dfrac{3}{6}\right)^n-4}{2+3\left(\dfrac{4}{6}\right)^n}=\dfrac{0-4}{2+3.0}=-2\)
1) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{6n-8}{n-1}\)
2) \(\lim\limits_{n\rightarrow\infty}\dfrac{n^2+5n-3}{4n^3-2n+5}\)
3) \(\lim\limits_{n\rightarrow\infty}\left(-2n^5+4x^4-3n^2+4\right)\)
1) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{-6n^5+3n^3-1}{n^4-8n}\)
2) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{-5n^7+8n^5-n}{5n^6-2n}\)
1) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{6n-8}{n-1}\)
2) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{n^2+5n-3}{4n^3-2n+5}\)
Lim (1^2+2^2+3^2+....+n^2)/ 4n(n+4)(3n+2)
\(lim\dfrac{5n^3-3n^2+6}{4n^2-3n^3+7n}\)
1/ lim \(\dfrac{\sqrt{n^4-n^2}+3n^2}{1-n^2}\)
2/ lim \(\dfrac{n\sqrt{n}-n^3}{4n^3+\sqrt{n}}\)
3/ lim \(\dfrac{3.4^n-1}{2.3^n+4}\)
4/ lim \(\dfrac{2^{n+1}+4.3^{n-1}}{1-2^{n-1}+3^{n+1}}\)
Tìm các giới hạn sau: l i m 6 n - 1 3 n + 2
1) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}\)
2) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\dfrac{4n-\sqrt{16n^2+1}}{n+1}\right)\)
3) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}\right)\)
Tìm hệ số x 7 trong 3 x 3 - 2 x 3 n biết rằng C n - 3 n - 4 + C n - 3 n - 6 = 6 n + 20
A. -24634368
B. 43110144
C. -55427328
D. Kết quả khác