\(\left(\sqrt{1-x}+1\right)\left(\sqrt{1+x}-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{1-x}+1=0\\\sqrt{1+x}-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{1-x}=-1\\\sqrt{1+x}=1\end{cases}}\)
Vì \(\sqrt{1-x}\ge0\Rightarrow\sqrt{1-x}\ne-1\)
\(\Rightarrow\sqrt{1+x}=1\)
=>1+x=1
=>x=0
\(\left(\sqrt{1-x}+1\right)\left(\sqrt{1+x}-1\right)=0\)
<=> \(\orbr{\begin{cases}\sqrt{1-x}+1=0\\\sqrt{1+x}-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\sqrt{1-x}=-1\left(\text{loại}\right)\\\sqrt{1+x}=1\end{cases}}\)
<=> \(1+x=1\)
<=> \(x=0\)