\(\left(\dfrac{2}{2-\sqrt{x}}+\dfrac{3+\sqrt{x}}{x-2\sqrt{x}}\right):\left(\dfrac{2+\sqrt{x}}{2-\sqrt{x}}-\dfrac{2-\sqrt{x}}{2+\sqrt{x}}-\dfrac{4x}{x-4}\right)\) (ĐK: \(x\ne4;x>0\))
\(=\left[\dfrac{-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\right]:\left[\dfrac{-\left(\sqrt{x}+2\right)}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{4x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right]\)
\(=\dfrac{-2\sqrt{x}+\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}:\left[\dfrac{-\left(\sqrt{x}+2\right)^2+\left(\sqrt{x}-2\right)^2-4x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right]\)
\(=\dfrac{3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{-x-4\sqrt{x}-4+x+4\sqrt{x}+4-4x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{-4x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{-4x}\)
\(=\dfrac{\left(3-\sqrt{x}\right)\left(\sqrt{x}+2\right)}{-4x}\)
\(=-\dfrac{3\sqrt{x}+6-x-2\sqrt{x}}{4x}\)
\(=-\dfrac{\sqrt{x}-x+6}{4x}\)
\(\left(\dfrac{\sqrt{x}}{x-1}-\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}\right)\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{3\sqrt{x}-1}\) (ĐK: \(x\ge0;x\ne1;x\ne\dfrac{1}{9}\))
\(=\left[\dfrac{\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2}\right]\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{3\sqrt{x}-1}\)
\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right]\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{3\sqrt{x}-1}\)
\(=\dfrac{x+\sqrt{x}-x+2\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{3\sqrt{x}-1}\)
\(=\dfrac{3\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{3\sqrt{x}-1}\)
\(=\dfrac{1}{\sqrt{x}-1}\)