Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Huỳnh Xương Hưng

\(\left\{{}\begin{matrix}U_1+U_5=51\\U_2+U_6=102\end{matrix}\right.\)

a) U?,q ?

b) tổng bao nhiêu số hạng đầu = 3069

c) 12288 la SH thứ mấy

Ami Mizuno
8 tháng 2 2022 lúc 8:25

Ta có: \(\left\{{}\begin{matrix}u_1+u_5=51\\u_2+u_6=102\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}u_1+u_5=51\\u_1q+u_5q=102\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}u_1+u_5=51\left(1\right)\\q\left(u_1+u_5\right)=102\left(2\right)\end{matrix}\right.\)

Chia (1) cho (2) vế theo vế ta có:

\(\dfrac{1}{q}=\dfrac{51}{102}\Rightarrow q=2\) \(\Rightarrow u_1+u_5=51\Leftrightarrow u_1+u_1q^4=51\Leftrightarrow u_1\left(1+2^4\right)=51\Rightarrow u_1=3\)

b. Ta có: \(S_n=\dfrac{u_1\left(q^n-1\right)}{q-1}=\dfrac{3\left(2^n-1\right)}{2-1}=3069\)

\(\Leftrightarrow3.2^n-3=3069\Leftrightarrow2^n=1024=2^{10}\Rightarrow n=10\)

Vậy 3069 là tổng của 10 số hạng đầu tiên

c. Ta có: \(u_n=u_1q^{n-1}\Leftrightarrow12288=3.2^{n-1}\Leftrightarrow4069=2^{n-1}=2^{12}\Rightarrow n-1=12\Leftrightarrow n=13\)

Vậy 12288 là số hạng thứ 13

Akai Haruma
8 tháng 2 2022 lúc 8:28

Lời giải:

\(PT \Leftrightarrow \left\{\begin{matrix} u_1+u_1q^4=51\\ u_1q+u_1q^5=102\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} u_1(1+q^4)=51\\ u_1q(1+q^4)=102\end{matrix}\right.\Rightarrow q=\frac{102}{51}=2\)

\(u_1=\frac{51}{q^4+1}=\frac{51}{2^4+1}=3\)

b. \(u_1+u_2+...+u_n=3069\)

$\Leftrightarrow u_1(1+q+q^2+....+q^{n-1})=3069$

$\Leftrightarrow 1+2+2^2+...+2^{n-1}=1023$

$\Leftrightarrow 2^n-1=1023\Leftrightarrow 2^n=1024=2^{10}\Rightarrow n=10$

Vậy tổng của 10 số hạng đầu bằng $3069$

c. 

Giả sử $12288$ là số hạng thứ $n$. Khi đó nó có dạng $u_1q^{n-1}=3.2^{n-1}$

$\Leftrightarrow 2^{n-1}=4096=2^{12}\Rightarrow n=13$

 

Đỗ Tuệ Lâm
8 tháng 2 2022 lúc 8:34

a,\(\left\{{}\begin{matrix}U_1+U_5=51\\U_2+U_6=102\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}U_1\left(1+q^4\right)=51\left(1\right)\\U_2\left(1+q^4\right)=102\left(2\right)\end{matrix}\right.\)

\(\dfrac{\left(2\right)}{\left(1\right)}=\dfrac{U_2\left(1+q^4\right)}{U_1\left(1+q^4\right)}=\dfrac{102}{51}\Leftrightarrow q=2\)

\(q=2\Rightarrow U_1=\dfrac{51}{1+q^4}=\dfrac{51}{1+24}=3\)

 

b,  \(S_{10}=U_1.\dfrac{1-q^{10}}{1-q}=3.\dfrac{1-2^{10}}{1-2}=3069\)

 

 

c, \(V_n=3.2^{\left(n-1\right)}=12288\)

\(2^{\left(n-1\right)}=4096\)

\(\Leftrightarrow n-1=12\Rightarrow n=13\)

=> số thứ 13.

Đỗ Tuệ Lâm
8 tháng 2 2022 lúc 8:20

a. U1 = 3 , q = 2

b, n=10

c, n=13


Các câu hỏi tương tự
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết