Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{2}\ne\dfrac{-m}{-1}=m\)
=>\(2m\ne m-1\)
=>\(m\ne-1\)(1)
\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2x-y=m+5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\y=2x-m-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(m-1\right)x-m\left(2x-m-5\right)=3m-1\\y=2x-m-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(m-1\right)-2mx+m^2+5m-3m+1=0\\y=2x-m-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(-m-1\right)+m^2+2m+1=0\\y=2x-m-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(m+1\right)=\left(m+1\right)^2\\y=2x-m-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1\\y=2\left(m+1\right)-m-5=2m+2-m-5=m-3\end{matrix}\right.\)
\(x^2-y^2< 4\)
=>\(\left(m+1\right)^2-\left(m-3\right)^2< 4\)
=>\(m^2+2m+1-m^2+6m-9< 4\)
=>8m-8<4
=>8m<12
=>\(m< \dfrac{3}{2}\)
Kết hợp (1), ta được: \(\left\{{}\begin{matrix}m< \dfrac{3}{2}\\m\ne-1\end{matrix}\right.\)