Vì (d): y=ax+b đi qua M(-2/3;-7) và N(2;1) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}-\dfrac{2}{3}a+b=-7\\2a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-5\end{matrix}\right.\)
\(\overrightarrow{MN}\)=(8/3;8)=8/3.(1;3).
Phương trình đường thẳng cần tìm đi qua N(2;1) và nhận vectơ \(\overrightarrow{n}\)=(3;-1) làm một vectơ pháp tuyến.
MN: 3(x-2)-1(y-1)=0 \(\Leftrightarrow\) 3x-y-5=0.