Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Đức Duy

undefined

Làm hết hộ em nha em cảm ơn mọi người ạ

Nguyen Minh Hieu
25 tháng 8 2021 lúc 22:23

a) Ta có:

\(\dfrac{x}{5}=\dfrac{2x}{10}=\dfrac{y}{3}=\dfrac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x}{10}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2x+y-z}{10+3-4}=\dfrac{81}{9}=9\\ \Rightarrow\left\{{}\begin{matrix}x=9\cdot5=45\\y=9\cdot3=27\\z=9\cdot4=36\end{matrix}\right.\)

Vậy x = 45; y = 27; z = 36.

b) Ta có:

\(\dfrac{x}{2}=\dfrac{y}{5}\)\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{15}\)

\(\dfrac{y}{3}=\dfrac{z}{5}\)\(\Rightarrow\dfrac{y}{15}=\dfrac{z}{25}\)

suy ra, \(\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{25}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{25}=\dfrac{x+y+z}{6+15+25}=-\dfrac{92}{46}=-2\\ \Rightarrow\left\{{}\begin{matrix}x=-2\cdot6=-12\\y=-2\cdot15=-30\\z=-2\cdot25=-50\end{matrix}\right.\)

Vậy x = -12; y = -30; z = -50.

c) Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=4\\ \Rightarrow\left\{{}\begin{matrix}x^2=36\\y^2=64\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=6\\y=8\end{matrix}\right.\\\left\{{}\begin{matrix}x=-6\\y=8\end{matrix}\right.\\\left\{{}\begin{matrix}x=6\\y=-8\end{matrix}\right.\\\left\{{}\begin{matrix}x=-6\\y=-8\end{matrix}\right.\end{matrix}\right.\)

Vậy (x; y) \(\in\left\{\left(6;8\right);\left(-6;8\right);\left(6;-8\right);\left(-6;-8\right)\right\}\)

d), Ta có:

\(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\\ 5y=7z\Rightarrow\dfrac{y}{7}=\dfrac{z}{5}\Rightarrow\dfrac{y}{14}=\dfrac{z}{10}\\ \Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\\ \Rightarrow\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\\ \Rightarrow\left\{{}\begin{matrix}x=2\cdot21=42\\y=2\cdot14=28\\z=2\cdot10=20\end{matrix}\right.\)

Vậy x = 42; y = 28; z = 20.

 

Nguyễn Lê Phước Thịnh
25 tháng 8 2021 lúc 23:23

a: Ta có: \(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{4}\)

nên \(\dfrac{2x}{10}=\dfrac{y}{3}=\dfrac{z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x}{10}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2x+y-z}{10+3-4}=\dfrac{81}{9}=9\)

Do đó: x=45; y=27; z=36

b: Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)

nên \(\dfrac{x}{6}=\dfrac{y}{15}\left(1\right)\)

Ta có: \(\dfrac{y}{3}=\dfrac{z}{5}\)

nên \(\dfrac{y}{15}=\dfrac{z}{25}\left(2\right)\)

Từ (1), (2) suy ra \(\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{25}\)

mà x+y+z=-92

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{25}=\dfrac{x+y+z}{6+15+25}=-\dfrac{92}{46}=-2\)

Do đó: x=-12; y=-30; z=-50

c: Ta có: \(\dfrac{x^2}{9}=\dfrac{y^2}{16}\)

mà \(x^2+y^2=100\)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)

Do đó: \(\left\{{}\begin{matrix}x^2=36\\y^2=64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{6;-6\right\}\\y\in\left\{8;-8\right\}\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
25 tháng 8 2021 lúc 23:29

d: Ta có: 2x=3y

nên \(\dfrac{x}{3}=\dfrac{y}{2}\)

hay \(\dfrac{x}{21}=\dfrac{y}{14}\left(1\right)\)

Ta có: 5y=7z

nên \(\dfrac{y}{7}=\dfrac{z}{5}\)

hay \(\dfrac{y}{14}=\dfrac{z}{15}\left(2\right)\)

Từ (1), (2) suy ra \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{15}\)

hay \(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{75}\)

mà 3x-7y+5z=30

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{75}=\dfrac{3x-7y+5z}{63-98+75}=\dfrac{30}{40}=\dfrac{3}{4}\)

Do đó: \(\left\{{}\begin{matrix}x=\dfrac{63}{4}\\y=\dfrac{21}{2}\\z=\dfrac{45}{4}\end{matrix}\right.\)


Các câu hỏi tương tự
Vũ Đức Duy
Xem chi tiết
Vũ Đức Duy
Xem chi tiết
Vũ Đức Duy
Xem chi tiết
Gia Huy Tạ
Xem chi tiết
Lê Phương Mai
Xem chi tiết
Phạm Mai Khôi
Xem chi tiết
Tứu Tuân
Xem chi tiết
trần hải anh
Xem chi tiết
Lương Cẩm Siêu
Xem chi tiết