\(\dfrac{2005}{2001}< 1;\dfrac{2048}{2028}>1\Rightarrow\dfrac{2005}{2001}< \dfrac{2048}{2028}\)
\(\dfrac{2005}{2001}\) = 1 + \(\dfrac{4}{2001}\) = 1 + \(\dfrac{20}{10005}\)
\(\dfrac{2048}{2028}\) = 1+ \(\dfrac{20}{2028}\)
Vì \(\dfrac{20}{10005}\) < \(\dfrac{20}{2028}\) nên \(\dfrac{2005}{2001}\) < \(\dfrac{2020}{2028}\)