\(1=a+b\ge2\sqrt{ab}\Rightarrow ab\le\frac{1}{4}\)
\(A=a^3+b^3+3ab\left(a+b\right)-2ab=1-2ab\ge1-2.\frac{1}{4}=\frac{1}{2}\)
Min A = 1/2 khi a = b = 1/2
\(1=a+b\ge2\sqrt{ab}\Rightarrow ab\le\frac{1}{4}\)
\(A=a^3+b^3+3ab\left(a+b\right)-2ab=1-2ab\ge1-2.\frac{1}{4}=\frac{1}{2}\)
Min A = 1/2 khi a = b = 1/2
cho a,b > 0 va a + b = 1 . Tim GTNN của
\(\dfrac{1}{a^3}+ab+b^3+4a^2b^2+\dfrac{1}{ab}\)
cho a, b>0 thỏa mãn a+b≤1. Tìm GTNN của biểu S=1/(a^3+b^3)+1/a^2b+1/ab^2
Cho a+b=1.Tìm GTNN của \(A=a^3+b^3+ab\)
Cho a , b >0 và a + b = 1
Tìm GTNN của P = 2 /ab + 3 / a^3 + b^2
cho các số thực dương a b c thở mãn abc=1. tìm gtnn của P=a^3+b^3/a^2+ab+b^2 + b^3+c^3/b^2+bc+c^2 + c^3+a^3/c^2+ac+a^2
cho a,b,c là các số thực dương thỏa a+b+c=6abc
tìm GTNN của S=bc/a^3(c+2b) +ac/b^3(a+2c) + ab/c^3(b+2a)
a,b,c là các số thực thay đổi và thỏa mãn abc=-2, a+b+c=0 tìm GTNN của bt F=(ab+bc+ac-a^2-b^2-c^2)/(a^3+b^3+c^3)
Bài 1:Cho a,b,c là các số thực dương thỏa mãn a+b=1.Tìm GTNN của bt sau
\(a,A=\frac{2}{ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\)
\(b,B=\frac{1}{ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\)
Bài 2:Cho a,b,c là 3 số dương thỏa mãn a+b+c=9.tìm GTNN của bt
\(a,A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{b+a}\) \(b,B=\frac{a^3}{c^2+b^2}+\frac{b^3}{a^2+c^2}+\frac{c^3}{a^2+b^2}\)
Bai 3:Cho x,y là 2 số dương thỏa mãn \(x^2+y^2=4\) Tìm GTNN của bt \(A=\left(x+\frac{1}{y}\right)^2+\left(y+\frac{1}{x}\right)^2\)
Bài 4 Cho a,b,c là các số không âm thỏa mãn a+b+c=1 Tìm GTLN của bt
\(a,A=\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}\) \(b,B=\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ac}{a+c}\)
cho abc là 3 số dương thỏa mãn ab=1. Tìm GTNN của A=(a+b+c)\(\left(a^2+b^2\right)\)+\(\frac{4}{a+b}\)