Cho phương trình y = x 3 - 6 x 2 + 9 x - 2 và các phát biểu sau:
(1) x = 0 là nghiệm duy nhất của phương trình
(2) Phương trình có nghiệm dương
(3) Cả 2 nghiệm của phương trình đều nhỏ hơn 1
(4) Phương trình trên có tổng 2 nghiệm là: - log 5 3 7
Số phát biểu đúng là:
A. 1
B. 2
C. 3
D. 4
Số nghiệm thuộc ( 0 ; π ) của phương trình sin x + 1 + c o s 2 x = 2 ( c o s 3 3 x + 1 ) là
A. 1
B. 2
C. 3
D. 4
Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như hình vẽ.
Gọi m là số nghiệm của phương trình f(f(x))=1. Khẳng định nào sau đây là đúng?
A. m = 6
B. m = 7
C. m = 5
D. m = 9
Số nghiệm thuộc khoảng ( 0 ; π ) của phương trình. tan x + sin x + tan x - sin x = 3 tan x là
A. 0
B. 1
C. 2
D. 3
Cho phương trình: 3 sin 2 x - cos 2 x = 4 sin x - 1 . Tổng các nghiệm trong khoảng - π ; π của phương trình là:
A. π
B. π 6
C. - 2 π 3
D. - π
Cho phương trình cos x + sin x = 1 + sin 2 x + cos 2 x . Nghiệm của phương trình có dạng x 1 = a π + k π . x 2 = ± b π + k 2 π b > 0 Tính tổng a + b
A. 1 12
B. 3
C. 7 π 12
D. π 4
Cho hàm số y = f ( x ) xác định và liên tục trên ℝ . Đồ thị của hàm số f ( x ) như hình bên. Gọi m là số nghiệm thực của phương trình f ( f ( x ) ) = 1 . Khẳng định nào sau đây là đúng?
A. m = 5
B. m = 6
C. m = 7
D. m = 9
Tổng tất cả các giá trị nguyên của m để phương trình 4 sin x + ( m - 4 ) cos x - 2 m + 5 = 0 có nghiệm là:
A. 5
B. 6
C. 10
D. 3
Cho f(x)+0 (*) có tổng các nghiệm dương nhỏ nhất bằng π 8 n 2 + π 4 n , n ∈ R , n ≥ 1 . Phương trình nào sau đây là phương trình hệ quả của (*)?
A. sin 4 x - sin x + 1 = 0
B. 2 c o s 2 x = sin x
C. 4 c o s 2 2 x - 2 c o s 2 x = 1 - c o s 2 x
D. 2 sin x + 1 = 0
Gọi a là số thực lớn nhất để bất phương trình x 2 - x + 2 + a ln x 2 - x + 1 ≥ 0 nghiệm đúng với mọi x ∈ ℝ . Mệnh đề nào sau đây đúng?
A. a ∈ ( 2 ; 3 ]
B. a ∈ 8 ; + ∞
C. a ∈ ( 6 ; 7 ]
D. a ∈ ( - 6 ; - 5 ]